Characterization of Ultrathin Doping Layers in Semiconductors

1997 ◽  
Vol 3 (4) ◽  
pp. 352-363 ◽  
Author(s):  
C.P. Liu ◽  
R.E. Dunin-Borkowski ◽  
C.B. Boothroyd ◽  
P.D. Brown ◽  
C.J. Humphreys

Abstract: The compositional profile of a narrow layer of InAsxPl−x in InP has been determined using energy-filtered Fresnel contrast analysis, high-resolution electron microscopy (HREM), and high-angle annular dark-field (HAADF) imaging. The consistency of the results obtained using the three techniques is discussed, and conclusions are drawn both about the validity of interpreting the magnitude of Fresnel contrast data quantitatively and about the degree to which high-angle annular dark-field images of such materials are affected by inelastic scattering and strain.

1991 ◽  
Vol 238 ◽  
Author(s):  
J. Liu ◽  
Y. Cheng ◽  
G. D. Lewen ◽  
M. B. Stearns

ABSTRACTThe structures of e-beam evaporated Pd/V multilayer thin films, which were fabricated at different substrate temperatures, have been characterized by high-angle annular dark-field microscopy and high resolution electron microscopy techniques. X-ray scattering and crosssectional electron microscopy showed that both the Pd and V layers are composed of small textured crystallites with dominant orientations of Pd (111) and V (110). It is found that Pd/V multilayers with high chemical modulation can be fabricated at substrate temperatures around 350 K and at a deposition rate of 0.2 nm/s. Here high-angle annular dark-field microscopy has been shown to provide direct information about the compositional variation of the interlayers of these ML.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1100-1101
Author(s):  
M. José-Yacamán ◽  
M. Marín-Almazo ◽  
J.A. Ascencio

The field of catalysis is one of the most important areas of the nano-sciences for many years. in deed the goal of having a catalyst, with the maximum active area exposed to a chemical reaction, has produced enormous amount of research in nanoparticles. Particularly, the metal nanoparticles study is a very important field in catalysis. Electron Microscopy is one of the techniques that have played a mayor role on studding nanoparticles. Since bright field images, dark field techniques, to the high-resolution atomic images of nanoparticles and more recently the High Angle Annular dark field images or Z-contrast. However this technique provides only indirect evidence of the atomic arrangements on the particles. High Resolution Electron Microscopy (HREM) still appears as a very powerful technique to study nanoparticles and their internal structure. Among the most interesting metals to study is the palladium, which acts for instance as excellent catalyst for hydrogenation of unsaturated hydrocarbons and has many other applications such as environmental catalysts.


2005 ◽  
Vol 876 ◽  
Author(s):  
Huiping Xu ◽  
Laurent Menard ◽  
Anatoly Frenkel ◽  
Ralph Nuzzo ◽  
Duane Johnson ◽  
...  

AbstractOur direct density function-based simulations of Ru-, Pt- and mixed Ru-Pt clusters on carbon-based supports reveal that substrates can mediate the PtRu5 particles [1]. Oblate structure of PtRu5 on C has been found [2]. Nevertheless, the cluster-substrate interface interactions are still unknown. In this work, we present the applications of combinations of quantitative z-contrast imaging and high resolution electron microscopy in investigating the effect of different substrates and ligand shells on metal particles. Specifically, we developed a relatively new and powerful method to determine numbers of atoms in a nanoparticle as well as three-dimensional structures of particles including size and shape of particles on the substrates by very high angle (~96mrad) annular dark-field (HAADF) imaging [2-4] techniques. Recently, we successfully synthesize icosahedra Au13 clusters with mixed ligands and cuboctahedral Au13 cores with thiol ligands, which have been shown by TEM to be of sub-nanometer size (0.84nm) and highly monodisperse narrow distribution. X-ray absorption and UV-visible spectra indicate many differences between icosahedra and cuboctahedral Au13 cores. Particles with different ligands show different emissions and higher quantum efficiency has been found in Au11 (PPH3) SC12)2C12. We plan to deposit those ligands-protected gold clusters onto different substrates, such as, TiO2 and graphite, etc. Aforementioned analysis procedure will be performed for those particles on the substrates and results will be correlated with that of our simulations and activity properties. This approach will lead to an understanding of the cluster-substrates relationship for consideration in real applications.


Author(s):  
M. José-Yacamán

Electron microscopy is a fundamental tool in materials characterization. In the case of nanostructured materials we are looking for features with a size in the nanometer range. Therefore often the conventional TEM techniques are not enough for characterization of nanophases. High Resolution Electron Microscopy (HREM), is a key technique in order to characterize those materials with a resolution of ~ 1.7A. High resolution studies of metallic nanostructured materials has been also reported in the literature. It is concluded that boundaries in nanophase materials are similar in structure to the regular grain boundaries. That work therefore did not confirm the early hipothesis on the field that grain boundaries in nanostructured materials have a special behavior. We will show in this paper that by a combination of HREM image processing, and image calculations, it is possible to prove that small particles and coalesced grains have a significant surface roughness, as well as large internal strain.


Author(s):  
Margaret L. Sattler ◽  
Michael A. O'Keefe

Multilayered materials have been fabricated with such high perfection that individual layers having two atoms deep are possible. Characterization of the interfaces between these multilayers is achieved by high resolution electron microscopy and Figure 1a shows the cross-section of one type of multilayer. The production of such an image with atomically smooth interfaces depends upon certain factors which are not always reliable. For example, diffusion at the interface may produce complex interlayers which are important to the properties of the multilayers but which are difficult to observe. Similarly, anomalous conditions of imaging or of fabrication may occur which produce images having similar traits as the diffusion case above, e.g., imaging on a tilted/bent multilayer sample (Figure 1b) or deposition upon an unaligned substrate (Figure 1c). It is the purpose of this study to simulate the image of the perfect multilayer interface and to compare with simulated images having these anomalies.


Sign in / Sign up

Export Citation Format

Share Document