scholarly journals On the solution of the problem of scattering of surface water waves by a sharp discontinuity in the surface boundary conditions

2000 ◽  
Vol 42 (2) ◽  
pp. 277-286 ◽  
Author(s):  
A. Chakrabarti

AbstractClosed-form analytical expressions are derived for the reflection and transmission coefficients for the problem of scattering of surface water waves by a sharp discontinuity in the surface-boundary-conditions, for the case of deep water. The method involves the use of the Havelock-type expansion of the velocity potential along with an analysis to solve a Carleman-type singular integral equation over a semi-infinite range. This method of solution is an alternative to the Wiener-Hopf technique used previously.

1984 ◽  
Vol 96 (2) ◽  
pp. 359-369 ◽  
Author(s):  
B. N. Mandal ◽  
S. K. Goswami

AbstractThe problem of scattering of surface water waves obliquely incident on a fixed half immersed circular cylinder is solved approximately by reducing it to the solution of an integral equation and also by the method of multipoles. For different values of the angle of incidence and the wave number the reflection and transmission coefficients obtained by both methods are evaluated numerically and represented graphically to compare the results obtained by the respective methods.


2005 ◽  
Vol 2005 (21) ◽  
pp. 3459-3470 ◽  
Author(s):  
A. Chakrabarti ◽  
B. N. Mandal ◽  
Rupanwita Gayen

The well-known semi-infinite dock problem of the theory of scattering of surface water waves is reexamined and known results are recovered by utilizing a Fourier type of analysis, giving rise to Carleman-type singular integral equations over semi-infinite ranges.


AIP Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 015215
Author(s):  
Joshua-Masinde Kundu ◽  
Ting Liu ◽  
Jia Tao ◽  
Jia-Yi Zhang ◽  
Ya-Xian Fan ◽  
...  

Wave Motion ◽  
2021 ◽  
pp. 102766
Author(s):  
Joshua-Masinde Kundu ◽  
Ting Liu ◽  
Jia Tao ◽  
Bo-Yang Ma ◽  
Jia-Yi Zhang ◽  
...  

2008 ◽  
Vol 38 (4) ◽  
pp. 862-879 ◽  
Author(s):  
Brian F. Farrell ◽  
Petros J. Ioannou

Abstract Theoretical understanding of the growth of wind-driven surface water waves has been based on two distinct mechanisms: growth due to random atmospheric pressure fluctuations unrelated to wave amplitude and growth due to wave coherent atmospheric pressure fluctuations proportional to wave amplitude. Wave-independent random pressure forcing produces wave growth linear in time, while coherent forcing proportional to wave amplitude produces exponential growth. While observed wave development can be parameterized to fit these functional forms and despite broad agreement on the underlying physical process of momentum transfer from the atmospheric boundary layer shear flow to the water waves by atmospheric pressure fluctuations, quantitative agreement between theory and field observations of wave growth has proved elusive. Notably, wave growth rates are observed to exceed laminar instability predictions under gusty conditions. In this work, a mechanism is described that produces the observed enhancement of growth rates in gusty conditions while reducing to laminar instability growth rates as gustiness vanishes. This stochastic parametric instability mechanism is an example of the universal process of destabilization of nearly all time-dependent flows.


2020 ◽  
Author(s):  
MODI ZHU ◽  
Jingfeng Wang ◽  
Husayn Sharif ◽  
Valeriy Ivanov ◽  
Aleksey Sheshukov

2003 ◽  
Vol 17 (2) ◽  
pp. 199-220 ◽  
Author(s):  
B. Buffoni ◽  
�. S�r� ◽  
J.F. Toland

Sign in / Sign up

Export Citation Format

Share Document