scholarly journals Maximal ideal space of function algebras

Author(s):  
Jorge Bustamante González ◽  
Raul Escobedo Conde

AbstractWe present a representation theory for the maximal ideal space of a real function algebra, endowed with the Gelfand topology, using the theory of uniform spaces. Application are given to algebras of differentiable functions in a normęd space, improving and generalizing some known results.

2007 ◽  
Vol 49 (2) ◽  
pp. 225-233 ◽  
Author(s):  
M. ABTAHI ◽  
T. G. HONARY

AbstractWe study an interesting class of Banach function algebras of infinitely differentiable functions on perfect, compact plane sets. These algebras were introduced by H. G. Dales and A. M. Davie in 1973, called Dales-Davie algebras and denoted by D(X, M), where X is a perfect, compact plane set and M = {Mn}∞n = 0 is a sequence of positive numbers such that M0 = 1 and (m + n)!/Mm+n ≤ (m!/Mm)(n!/Mn) for m, n ∈ N. Let d = lim sup(n!/Mn)1/n and Xd = {z ∈ C : dist(z, X) ≤ d}. We show that, under certain conditions on X, every f ∈ D(X, M) has an analytic extension to Xd. Let DP [DR]) be the subalgebra of all f ∈ D(X, M) that can be approximated by the restriction to X of polynomials [rational functions with poles off X]. We show that the maximal ideal space of DP is $X^_d$, the polynomial convex hull of Xd, and the maximal ideal space of DR is Xd. Using some formulae from combinatorial analysis, we find the maximal ideal space of certain subalgebras of Dales-Davie algebras.


1975 ◽  
Vol 18 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Bruce Lund

Let X be a compact Hausdorff space and C(X) the complexvalued continuous functions on X. We say A is a function algebra on X if A is a point separating, uniformly closed subalgebra of C(X) containing the constant functions. Equipped with the sup-norm ‖f‖ = sup{|f(x)|: x ∊ X} for f ∊ A, A is a Banach algebra. Let MA denote the maximal ideal space.Let D be the closed unit disk in C and let U be the open unit disk. We call A(D)={f ∊ C(D):f is analytic on U} the disk algebra. Let T be the unit circle and set C1(T) = {f ∊ C(T): f'(t) ∊ C(T)}.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Raymond Mortini ◽  
Rudolf Rupp

We determine, via classroom proofs, the maximal ideal space, the Bass stable rank as well as the topological and dense stable rank of the uniform closure of all complex-valued functions continuously differentiable on neighborhoods of a compact planar set and holomorphic in the interior of . In this spirit, we also give elementary approaches to the calculation of these stable ranks for some classical function algebras on .


1988 ◽  
Vol 40 (5) ◽  
pp. 1084-1104 ◽  
Author(s):  
S. H. Kulkarni ◽  
S. Arundhathi

The concepts of Choquet boundary and Shilov boundary are well-established in the context of a complex function algebra (see [2] for example). There have been a few attempts to develop the concept of a Shilov boundary for real algebras, [4], [6] and [7]. But there seems to be none to develop the concept of Choquet boundary for real algebras.The aim of this paper is to develop the theory of Choquet boundary of a real function algebra (see Definition (1.8)) along the lines of the corresponding theory for a complex function algebra.In the first section we define a real-part representing measure for a continuous linear functional ϕ on a real function algebra A with the property ║ϕ║ = 1 = ϕ(1). The elements of A are functions on a compact, Hausdorff space X. The Choquet boundary is then defined as the set of those points x ∊ X such that the real part of the evaluation functional, Re(ex), has a unique real part representing measure.


2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Osamu Hatori ◽  
Takeshi Miura

AbstractWe describe the general form of isometries between uniformly closed function algebras on locally compact Hausdorff spaces in a continuation of the study by Miura. We can actually obtain the form on the Shilov boundary, rather than just on the Choquet boundary. We also give an example showing that the form cannot be extended to the whole maximal ideal space.


1983 ◽  
Vol 26 (1) ◽  
pp. 44-49
Author(s):  
S. H. Kulkarni ◽  
B. V. Limaye

AbstractIt is well-known that a topological space is a Gleason part of some complex function algebra if and only if it is completely regular and σ-compact. In the present paper, a Gleason part of a real function algebra is characterized as a completely regular σ-compact topological space which admits an involutoric homeomorphism.


Sign in / Sign up

Export Citation Format

Share Document