scholarly journals On a relationship between magnetohydrodynamic planetary eigenmodes and second-class inertial elgenmodes

1974 ◽  
Vol 18 (2) ◽  
pp. 205-215
Author(s):  
J. A. Rickard

AbstractStewartson [5] considered second class oscillations in a spherical shell in the presence of a toroidal magnetic field. He followed Hide [2] and supposed the toroidal field to be uniform.

Convective instabilities of a self-gravitating, rapidly rotating fluid spherical shell are investigated in the presence of an imposed azimuthal axisymmetric magnetic field in the form of the toroidal decay mode that satisfies electrically insulating boundary conditions and has dipole symmetry. Concentration is on two major questions: how purely thermal convection of the different forms (Zhang 1992, 1994) is affected by the Lorentz force, the strength of which is measured by the Elsasser number ∧, and in what manner purely magnetic instabilities in a spherical shell (Zhang & Fearn 1993, 1994) are associated with magnetic convection. It is found that the two-dimensionality of purely thermal convection (Busse 1970) survives under the influence of a strong Lorentz force. Convective motions always attempt to satisfy the Proudman–Taylor constraint and remain predominantly two-dimensional in the whole range of ∧, 0 ≤ ∧ ≤ ∧ c , where ∧ c ═ O (10) is the critical Elsasser number for purely magnetic instabilities. Though the optimum azimuthal wave number m of convection rolls decreases drastically, from m ~ O ( T 1/6 ) at ∧ ═ 0 to m ═ O (5) at ∧ ═ O (1). We show that there exist no optimum values of ∧ that can give rise to an overall minimum of the (modified) Rayleigh number R *; the optimum value of R * is a monotonically, smoothly decreasing function of ∧, from R * ═ O ( T 1/6 ) at ∧ < O ( T -1/6 ) to R * ═ O (–10) at ∧ ═ 20. We also show that the influence of the magnetic field on thermal convection is crucially dependent on the size of the Prandtl number. At sufficiently small Prandtl number, the Poincaré convection mode (Zhang 1994) is preferred in the region 0 ≤ ∧ < ∧ c , and is only slightly affected by the presence of the toroidal magnetic field. Analytical solutions of the magnetic convection problem are then obtained based on a perturbation analysis, showing a good agreement with the numerical solution.


2009 ◽  
Vol 5 (H15) ◽  
pp. 254-255
Author(s):  
A. Ferrari ◽  
A. Mignone ◽  
P. Rossi ◽  
G. Bodo ◽  
S. Massaglia

AbstractWe performed high-resolution three dimensional numerical simulations of relativistic MHD jets carrying an initially toroidal magnetic field responsible for the process of jet acceleration and collimation. We find that in the 3D case the toroidal field gives rise to strong current driven kink instabilities leading to jet wiggling. However, it appears to be able to maintain an highly relativistic spine along its full length.


1993 ◽  
Vol 137 ◽  
pp. 78-80
Author(s):  
V.N. Krivodubskij

AbstractThe generation mechanism of the toroidal magnetic field by the angular velocity radial gradient acting on the relict poloidal magnetic field on the boundary between the con-vective and radiative zones is proposed. The magnetic induction magnitude of the toroidal field reaches about 2×10σ G, the limiting effect of the magnetic buoyancy being taking into account. This value conforms to the estimation of toroidal field obtained from helioseismological data.


2012 ◽  
Vol 8 (S294) ◽  
pp. 69-70 ◽  
Author(s):  
Valery N. Krivodubskij

AbstractAn explanation of the mystery of the extended 23rd solar cycle duration about 13 years in the frame of non-linear regime of the αΩ- dynamo model is proposed. The calculated dynamo-period of the solar cycle, T, depends (in the inverse proportion) on the intensity of the α- effect in the solar convection zone (SCZ). As well, the intensity of the α- effect in non-linear regime depends (also in the inverse proportion) on the value of toroidal magnetic field, BT (magnetic alpha-quenching). Thus, the calculated period is in direct proportion to the value of toroidal magnetic field: the stronger toroidal field BT in certain cycle, the longer dynamo-period T of this cycle. Since the toroidal field is hidden in the deep layers of the SCZ, it is necessary to know some other magnetic experimental evidence that reflects something like information about inner toroidal field. In this connection we allow for that the strong toroidal field is transported by magnetic buoyancy to the solar surface and produces here the sunspots, so they carry indirect information on BT. In this connection we took into account up-to-date observed data on the essential increase of the averaged annual module of the magnetic field of the large-scale sunspots, Bsp, in the 23rd cycle; and then we made calculation of the alpha-quenching which depends on these referred data. It is important to know only relative variations of magnetic index Bsp for calculation of the dynamo-period variation. Our estimations showed that the average solar period, which is about 11 years, must increase by a factor of 1,2; so the calculated 23rd cycle dynamo-period would be about 13 years.


2021 ◽  
Vol 47 (9) ◽  
pp. 912-937
Author(s):  
V. I. Krauz ◽  
K. N. Mitrofanov ◽  
V. V. Myalton ◽  
I. V. Il’ichev ◽  
A. M. Kharrasov ◽  
...  

2003 ◽  
Vol 585 (2) ◽  
pp. 1124-1137 ◽  
Author(s):  
Keke Zhang ◽  
Xinhao Liao ◽  
Gerald Schubert

1977 ◽  
Vol 16 (3) ◽  
pp. 491-496 ◽  
Author(s):  
Akihiro Mohri ◽  
Kazunari Ikuta ◽  
Junji Fujita

1979 ◽  
Vol 46 (1) ◽  
pp. 151-155 ◽  
Author(s):  
F. C. Moon

Experimental evidence and a theoretical model are presented for the magnetoelastic buckling of a rigid superconducting ring in a steady circumferential (toroidal)magnetic field. The theoretical model predicts a coupled translation and pitch displacement of the coil in the buckled mode. A discussion is given of both the linear and nonlinear magnetic perturbation forces. The experiments were conducted in liquid helium (4.2°K). The lowest natural frequency of the rigid coil on elastic springs was observed to decrease near the buckling current. Agreement between theory and experiment is fair. These results may have design implications for poloidal field coils in magnetic fusion Tokamak reactors.


Sign in / Sign up

Export Citation Format

Share Document