scholarly journals On the characterisation of Asplund spaces

Author(s):  
J. R. Giles

AbstractA Banach space is an Asplund space if every continuous convex function on an open convex subset is Fréchet differentiable on a dense G8 subset of its domain. The recent research on the Radon-Nikodým property in Banach spaces has revealed that a Banach space is an Asplund space if and only if every separable subspace has separable dual. It would appear that there is a case for providing a more direct proof of this characterisation.

1995 ◽  
Vol 52 (1) ◽  
pp. 161-167 ◽  
Author(s):  
J.R. Giles ◽  
Scott Sciffer

For a continuous convex function on an open convex subset of any Banach space a separability condition on its image under the subdifferential mapping is sufficient to guarantee the generic Fréchet differentiability of the function. This gives a direct insight into the characterisation of Asplund spaces.


2004 ◽  
Vol 77 (3) ◽  
pp. 357-364 ◽  
Author(s):  
Petar S. Kenderov ◽  
Warren B. Moors

AbstractA Banach space (X, ∥ · ∥) is said to be a dual differentiation space if every continuous convex function defined on a non-empty open convex subset A of X* that possesses weak* continuous subgradients at the points of a residual subset of A is Fréchet differentiable on a dense subset of A. In this paper we show that if we assume the continuum hypothesis then there exists a dual differentiation space that does not admit an equivalent locally uniformly rotund norm.


1981 ◽  
Vol 24 (1) ◽  
pp. 59-68 ◽  
Author(s):  
R. Anantharaman ◽  
T. Lewis ◽  
J. H. M. Whitfield

AbstractIt is shown that dentability of the unit ball of a conjugate Banach space X* does not imply smoothability of the unit ball of X, answering a question raised by Kemp. A property called strong smoothability is introduced and is shown to be dual to dentability. The results are used to provide new proofs of the facts that X is an Asplund space whenever it has an equivalent Fréchet differentiable norm, or whenever X* has the Radon-Nikodym Property.


1990 ◽  
Vol 42 (2) ◽  
pp. 201-213 ◽  
Author(s):  
Bernice Sharp

In this paper topological linear spaces are categorised according to the differentiability properties of their continuous convex functions. Mazur's Theorem for Banach spaces is generalised: all separable Baire topological linear spaces are weak Asplund. A class of spaces is given for which Gateaux and Fréchet differentiability of a continuous convex function coincide, which with Mazur's theorem, implies that all Montel Fréchet spaces are Asplund spaces. The effect of weakening the topology of a given space is studied in terms of the space's classification. Any topological linear space with its weak topology is an Asplund space; at the opposite end of the topological spectrum, an example is given of the inductive limit of Asplund spaces which is not even a Gateaux differentiability space.


2011 ◽  
Vol 83 (3) ◽  
pp. 450-455
Author(s):  
J. R. GILES

AbstractA Banach space is an Asplund space if every continuous gauge has a point where the subdifferential mapping is Hausdorff weak upper semi-continuous with weakly compact image. This contributes towards the solution of a problem posed by Godefroy, Montesinos and Zizler.


1992 ◽  
Vol 46 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Warren B. Moors

For a set E in a metric space X the index of non-separability is β(E) = inf{r > 0: E is covered by a countable-family of balls of radius less than r}.Now, for a set-valued mapping Φ from a topological space A into subsets of a metric space X we say that Φ is β upper semi-continuous at t ∈ A if given ε > 0 there exists a neighbourhood U of t such that β(Φ(U)) < ε. In this paper we show that if the subdifferential mapping of a continuous convex function Φ is β upper semi-continuous on a dense subset of its domain then Φ is Fréchet differentiable on a dense Gδ subset of its domain. We also show that a Banach space is Asplund if and only if every weak* compact subset has weak* slices whose index of non-separability is arbitrarily small.


2009 ◽  
Vol 79 (2) ◽  
pp. 309-317 ◽  
Author(s):  
J. R. GILES

AbstractThe deep Preiss theorem states that a Lipschitz function on a nonempty open subset of an Asplund space is densely Fréchet differentiable. However, the simpler Fabian–Preiss lemma implies that it is Fréchet intermediately differentiable on a dense subset and that for a large class of Lipschitz functions this dense subset is residual. Results are presented for Asplund generated spaces.


2000 ◽  
Vol 61 (3) ◽  
pp. 451-454 ◽  
Author(s):  
John Giles ◽  
Jon Vanderwerff

We introduce a property formally weaker than weak uniform rotundity, which we call equatorial weak uniform rotundity. We show that an equatorially weakly uniformly rotund norm need not be weakly locally uniformly rotund. Nevertheless, we show that an equatorially weakly uniformly rotund Banach space is an Asplund space.


1999 ◽  
Vol 51 (1) ◽  
pp. 26-48 ◽  
Author(s):  
Marián Fabian ◽  
Boris S. Mordukhovich

AbstractWe develop a method of separable reduction for Fréchet-like normals and ε-normals to arbitrary sets in general Banach spaces. This method allows us to reduce certain problems involving such normals in nonseparable spaces to the separable case. It is particularly helpful in Asplund spaces where every separable subspace admits a Fréchet smooth renorm. As an applicaton of the separable reduction method in Asplund spaces, we provide a new direct proof of a nonconvex extension of the celebrated Bishop-Phelps density theorem. Moreover, in this way we establish new characterizations of Asplund spaces in terms of ε-normals.


Sign in / Sign up

Export Citation Format

Share Document