scholarly journals A theorem on connected graphs in which every edge belongs to a 1-factor

1974 ◽  
Vol 18 (4) ◽  
pp. 450-452 ◽  
Author(s):  
Charles H. C. Little

In this paper, we consider factor covered graphs, which are defined basically as connected graphs in which every edge belongs to a 1-factor. The main theorem is that for any two edges e and e′ of a factor covered graph, there is a cycle C passing through e and e′ such that the edge set of C is the symmetric difference of two 1-factors.

2013 ◽  
Vol 22 (5) ◽  
pp. 733-748 ◽  
Author(s):  
SHINYA FUJITA ◽  
MICHITAKA FURUYA ◽  
KENTA OZEKI

Let $\mathcal{H}$ be a set of connected graphs. A graph G is said to be $\mathcal{H}$-free if G does not contain any element of $\mathcal{H}$ as an induced subgraph. Let $\mathcal{F}_{k}(\mathcal{H})$ be the set of k-connected $\mathcal{H}$-free graphs. When we study the relationship between forbidden subgraphs and a certain graph property, we often allow a finite exceptional set of graphs. But if the symmetric difference of $\mathcal{F}_{k}(\mathcal{H}_{1})$ and $\mathcal{F}_{k}(\mathcal{H}_{2})$ is finite and we allow a finite number of exceptions, no graph property can distinguish them. Motivated by this observation, we study when we obtain a finite symmetric difference. In this paper, our main aim is the following. If $|\mathcal{H}|\leq 3$ and the symmetric difference of $\mathcal{F}_{1}(\{H\})$ and $\mathcal{F}_{1}(\mathcal{H})$ is finite, then either $H\in \mathcal{H}$ or $|\mathcal{H}|=3$ and H=C3. Furthermore, we prove that if the symmetric difference of $\mathcal{F}_{k}(\{H_{1}\})$ and $\mathcal{F}_{k}(\{H_{2}\})$ is finite, then H1=H2.


10.37236/6190 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Shuya Chiba ◽  
Jun Fujisawa ◽  
Michitaka Furuya ◽  
Hironobu Ikarashi

Let $\mathcal{H}$ be a family of connected graphs. A graph $G$ is said to be $\mathcal{H}$-free if $G$ does not contain any members of $\mathcal{H}$ as an induced subgraph. Let $\mathcal{F}(\mathcal{H})$ be the family of connected $\mathcal{H}$-free graphs. In this context, the members of $\mathcal{H}$ are called forbidden subgraphs.In this paper, we focus on two pairs of forbidden subgraphs containing a common graph, and compare the classes of graphs satisfying each of the two forbidden subgraph conditions. Our main result is the following: Let $H_{1},H_{2},H_{3}$ be connected graphs of order at least three, and suppose that $H_{1}$ is twin-less. If the symmetric difference of $\mathcal{F}(\{H_{1},H_{2}\})$ and $\mathcal{F}(\{H_{1},H_{3}\})$ is finite and the tuple $(H_{1};H_{2},H_{3})$ is non-trivial in a sense, then $H_{2}$ and $H_{3}$ are obtained from the same vertex-transitive graph by successively replacing a vertex with a clique and joining the neighbors of the original vertex and the clique. Furthermore, we refine a result in [Combin. Probab. Comput. 22 (2013) 733–748] concerning forbidden pairs.


2017 ◽  
Vol 37 (2) ◽  
pp. 107-114
Author(s):  
Mohamed Amine Boutiche

In this paper, we give lower bounds of vertex and edge forwarding indices for cartesian product, join, composition, disjunction and symmetric difference of graphs. Moreover, we derive further lower bounds for several operators on connected graphs, such as subdivision graph and total graphs.


2021 ◽  
Vol 1751 ◽  
pp. 012023
Author(s):  
F C Puri ◽  
Wamiliana ◽  
M Usman ◽  
Amanto ◽  
M Ansori ◽  
...  
Keyword(s):  

2019 ◽  
Vol 17 (1) ◽  
pp. 1490-1502 ◽  
Author(s):  
Jia-Bao Liu ◽  
Muhammad Javaid ◽  
Mohsin Raza ◽  
Naeem Saleem

Abstract The second smallest eigenvalue of the Laplacian matrix of a graph (network) is called its algebraic connectivity which is used to diagnose Alzheimer’s disease, distinguish the group differences, measure the robustness, construct multiplex model, synchronize the stability, analyze the diffusion processes and find the connectivity of the graphs (networks). A connected graph containing two or three cycles is called a bicyclic graph if its number of edges is equal to its number of vertices plus one. In this paper, firstly the unique graph with a minimum algebraic connectivity is characterized in the class of connected graphs whose complements are bicyclic with exactly three cycles. Then, we find the unique graph of minimum algebraic connectivity in the class of connected graphs $\begin{array}{} {\it\Omega}^c_{n}={\it\Omega}^c_{1,n}\cup{\it\Omega}^c_{2,n}, \end{array}$ where $\begin{array}{} {\it\Omega}^c_{1,n} \end{array}$ and $\begin{array}{} {\it\Omega}^c_{2,n} \end{array}$ are classes of the connected graphs in which the complement of each graph of order n is a bicyclic graph with exactly two and three cycles, respectively.


2021 ◽  
Vol 82 (6) ◽  
Author(s):  
Christophe Besse ◽  
Grégory Faye

2021 ◽  
Vol 344 (7) ◽  
pp. 112376
Author(s):  
John Engbers ◽  
Lauren Keough ◽  
Taylor Short

2019 ◽  
Vol 342 (11) ◽  
pp. 3047-3056
Author(s):  
Chengfu Qin ◽  
Weihua He ◽  
Kiyoshi Ando

Sign in / Sign up

Export Citation Format

Share Document