scholarly journals Approximation and extension of continuous functions

Author(s):  
Salvador Hernández-Muñoz

AbstractIn this paper we study the approximation of vector valued continuous functions defined on a topological space and we apply this study to different problems. Thus we give a new proof of Machado's Theorem. Also we get a short proof of a Theorem of Katětov and we prove a generalization of Tietze's Extension Theorem for vector-valued continuous functions, thereby solving a question left open by Blair.

2001 ◽  
Vol 70 (3) ◽  
pp. 323-336 ◽  
Author(s):  
T. S. S. R. K. Rao ◽  
A. K. Roy

AbstractIn this paper we give a complete description of diameter-preserving linear bijections on the space of affine continuous functions on a compact convex set whose extreme points are split faces. We also give a description of such maps on function algebras considered on their maximal ideal space. We formulate and prove similar results for spaces of vector-valued functions.


2021 ◽  
Vol 78 (1) ◽  
pp. 199-214
Author(s):  
Lev Bukovský

Abstract The paper tries to survey the recent results about relationships between covering properties of a topological space X and the space USC(X) of upper semicontinuous functions on X with the topology of pointwise convergence. Dealing with properties of continuous functions C(X), we need shrinkable covers. The results are extended for A-measurable and upper A-semimeasurable functions where A is a family of subsets of X. Similar results for covers respecting a bornology and spaces USC(X) or C(X) endowed by a topology defined by using the bornology are presented. Some of them seem to be new.


Author(s):  
G. T. Roberts

1. Objective. It is possible to define order convergence on the vector lattice of all continuous functions of compact support on a locally compact topological space. Every measure is a linear form on this vector lattice. The object of this paper is to prove that a measure is such that every set of the first category of Baire has measure zero if and only if the measure is a linear form which is continuous in the order convergence.


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Beata Derȩgowska ◽  
Beata Gryszka ◽  
Karol Gryszka ◽  
Paweł Wójcik

AbstractThe investigations of the smooth points in the spaces of continuous function were started by Banach in 1932 considering function space $$\mathcal {C}(\Omega )$$ C ( Ω ) . Singer and Sundaresan extended the result of Banach to the space of vector valued continuous functions $$\mathcal {C}(\mathcal {T},E)$$ C ( T , E ) , where $$\mathcal {T}$$ T is a compact metric space. The aim of this paper is to present a description of semi-smooth points in spaces of continuous functions $$\mathcal {C}_0(\mathcal {T},E)$$ C 0 ( T , E ) (instead of smooth points). Moreover, we also find necessary and sufficient condition for semi-smoothness in the general case.


2021 ◽  
Vol 15 (01) ◽  
pp. 45-59
Author(s):  
E. M. Bonotto ◽  
M. Federson ◽  
P. Muldowney

The classical pricing theory requires that the simple sets of outcomes are extended, using the Kolmogorov Extension Theorem, to a sigma-algebra of measurable sets in an infinite-dimensional sample space whose elements are continuous paths; the process involved are represented by appropriate stochastic differential equations (using Itô calculus); a suitable measure for the sample space can be found by means of the Girsanov and Radon–Nikodym Theorems; the derivative asset valuation is determined by means of an expression using Lebesgue integration. It is known that if we replace Lebesgue’s by the generalized Riemann integration to obtain the expectation, the same result can be achieved by elementary methods. In this paper, we consider the Black–Scholes PDE subject to impulse action. We replace the process which follows a geometric Brownian motion by a process which has additional impulsive displacements at random times. Instead of constants, the volatility and the risk-free interest rate are considered as continuous functions which can vary in time. Using the Feynman–Ka[Formula: see text] formulation based on generalized Riemann integration, we obtain a pricing formula for a European call option which copes with many discontinuities. This paper seeks to develop techniques of mathematical analysis in derivative pricing theory which are less constrained by the standard assumption of lognormality of prices. Accordingly, the paper is aimed primarily at analysis rather than finance. An example is given to illustrate the main results.


1962 ◽  
Vol 14 ◽  
pp. 461-466 ◽  
Author(s):  
Isaac Namioka

Let Δn (n > 0) denote the subset of the Euclidean (n + 1)-dimensional space defined byA subset σ of Δn is called a face if there exists a sequence 0 ≤ i1 ≤ i2 ≤ … < im ≤ n such thatand the dimension of σ is defined to be (n — m). Let denote the union of all faces of Δn of dimensions less than n. A topological space Y is called solid if any continuous map on a closed subspace A of a normal space X into Y can be extended to a map on X into Y. By Tietz's extension theorem, each face of Δn is solid. The present paper is concerned with a generalization of the following theorem which seems well known.


1971 ◽  
Vol 23 (3) ◽  
pp. 468-480 ◽  
Author(s):  
N. A. Friedman ◽  
A. E. Tong

Representation theorems for additive functional have been obtained in [2, 4; 6-8; 10-13]. Our aim in this paper is to study the representation of additive operators.Let S be a compact Hausdorff space and let C(S) be the space of real-valued continuous functions defined on S. Let X be an arbitrary Banach space and let T be an additive operator (see § 2) mapping C(S) into X. We will show (see Lemma 3.4) that additive operators may be represented in terms of a family of “measures” {μh} which take their values in X**. If X is weakly sequentially complete, then {μh} can be shown to take their values in X and are vector-valued measures (i.e., countably additive in the norm) (see Lemma 3.7). And, if X* is separable in the weak-* topology, T may be represented in terms of a kernel representation satisfying the Carathéordory conditions (see [9; 11; §4]):


1979 ◽  
Vol 31 (4) ◽  
pp. 890-896 ◽  
Author(s):  
Seki A. Choo

In this paper, X denotes a completely regular Hausdorff space, Cb(X) all real-valued bounded continuous functions on X, E a Hausforff locally convex space over reals R, Cb(X, E) all bounded continuous functions from X into E, Cb(X) ⴲ E the tensor product of Cb(X) and E. For locally convex spaces E and F, E ⴲ, F denotes the tensor product with the topology of uniform convergence on sets of the form S X T where S and T are equicontinuous subsets of E′, F′ the topological duals of E, F respectively ([11], p. 96). For a locally convex space G , G ′ will denote its topological dual.


Sign in / Sign up

Export Citation Format

Share Document