Effect of correction/calibration factors on accuracy of in vivo dose delivery with cylindrical n-type Isorad diode in conventional radiotherapy

2013 ◽  
Vol 13 (2) ◽  
pp. 180-188
Author(s):  
Kashif Islam ◽  
Asdar ul Haque ◽  
Muzaffar Hussain ◽  
Sohail Murad ◽  
Khan Muhammad ◽  
...  

AbstractPurposeThe main aim was to use pre-calculated correction factors and calibration factors for measurement of accuracy of dose delivery before implementation of such in vivo dosimetry on real patients visiting for first radiation treatment. These factors were verified by generating the most common treatment plans on human phantom except for breast and colon using cobalt-60 unit.Materials and methodsSix treatment plans were generated, i.e. nasopharynx, bladder, prostate, brain, larynx and lung of human phantom, total 18 fields were planned keeping in view the correction factors which are to be verified. MULTIDATA Decision Support System 2.5, Shimadzu simulator, Isorad diode-n type, electrometer patient dose monitor and ATOM Adult male human phantom were used.Results and conclusionFor 18 fields, the dose delivery was accurate in the range 0·29–6·74%. The deviation between measured and expected doses to nasopharynx, lung, bladder, prostate, brain and larynx cases of human phantom ranged from 1·44–3·89%, 0·29–0·54%, 0·44–6·18%, 0·54–5·16%, 0·33–4·90%, 5·58–6·74%, respectively. In 30 palliative patient cases, the first radiation treatment was also monitored. The accuracy of dosimety ranged from 1·05% to 5·35%. This study is helpful to identify areas of improvement in treatment of patients like quality control/quality assurance (QA) of treatment planning system, beam data modifications, machine repair maintenance, QA audit in radiotherapy.

2020 ◽  
Vol 61 (6) ◽  
pp. 959-968
Author(s):  
Yuichi Akino ◽  
Shintaro Maruoka ◽  
Katsuyuki Yano ◽  
Hiroshi Abe ◽  
Fumiaki Isohashi ◽  
...  

Abstract The goal of total body irradiation (TBI) is to deliver a dose to the whole body with uniformity within ±10%. The purpose of this study was to establish the technique of TBI using plastic bead bags. A lifting TBI bed, Model ORP-TBI-MN, was used. The space between the patient’s body and the acrylic walls of the bed was filled with polyacetal bead bags. Patients were irradiated by a 10 MV photon beam with a source to mid-plane distance of 400 cm. The monitor unit (MU) was calculated by dose-per-MU, tissue-phantom-ratio and a spoiler factor measured in solid water using an ionization chamber. The phantom-scatter correction factor, off-center ratio and the effective density of the beads were also measured. Diode detectors were used for in vivo dosimetry (IVD). The effective density of the beads was 0.90 ± 0.09. The point doses calculated in an I’mRT phantom with and without heterogeneity material showed good agreement, with measurements within 3%. An end-to-end test was performed using a RANDO phantom. The mean ± SD (range) of the differences between the calculated and IVD-measured mid-plane doses was 1.1 ± 4.8% (−5.9 to 5.0%). The differences between the IVD-measured doses and the doses calculated with Acuros XB of the Eclipse treatment planning system (TPS) were within 5%. For two patients treated with this method, the differences between the calculated and IVD-measured doses were within ±6% when excluding the chest region. We have established the technique of TBI using plastic bead bags. The TPS may be useful to roughly estimate patient dose.


2016 ◽  
Vol 15 (6) ◽  
pp. NP35-NP46 ◽  
Author(s):  
Joost Mathijs Verburg ◽  
Clemens Grassberger ◽  
Stephen Dowdell ◽  
Jan Schuemann ◽  
Joao Seco ◽  
...  

Simulations of clinical proton radiotherapy treatment plans using general purpose Monte Carlo codes have been proven to be a valuable tool for basic research and clinical studies. They have been used to benchmark dose calculation methods, to study radiobiological effects, and to develop new technologies such as in vivo range verification methods. Advancements in the availability of computational power have made it feasible to perform such simulations on large sets of patient data, resulting in a need for automated and consistent simulations. A framework called MCAUTO was developed for this purpose. Both passive scattering and pencil beam scanning delivery are supported. The code handles the data exchange between the treatment planning system and the Monte Carlo system, which requires not only transfer of plan and imaging information but also translation of institutional procedures, such as output factor definitions. Simulations are performed on a high-performance computing infrastructure. The simulation methods were designed to use the full capabilities of Monte Carlo physics models, while also ensuring consistency in the approximations that are common to both pencil beam and Monte Carlo dose calculations. Although some methods need to be tailored to institutional planning systems and procedures, the described procedures show a general road map that can be easily translated to other systems.


2022 ◽  
Vol 12 (2) ◽  
pp. 537
Author(s):  
Owen J. Brace ◽  
Iolanda Fuduli ◽  
Saree Alnaghy ◽  
Albert T. Le ◽  
Jeremy A. Davis ◽  
...  

A large area pixelated silicon array detector named “MP987” has been developed for in vivo dosimetry. The detector was developed to overcome the non-water equivalent response of EPID (Electronic Portal Imaging Device) dosimetry systems, due to the shortfalls of the extensive corrections required. The detector, readout system and software have all been custom designed to be operated independently from the linac with the array secured directly above the EPID, to be used in combination with the 6 MV imaging system. Dosimetry characterisation measurements of percentage depth dose (PDD), dose rate dependence, radiation damage, output factors (OF), profile measurements, linearity and uniformity were performed. Additionally, the first pre-clinical tests with this novel detector of a transit dosimetry characterization and a collapsed IMRT (intensity-modulated radiation therapy) study are presented. Both PDD and OF measurements had a percentage difference of less than 2.5% to the reference detector. A maximum change in sensitivity of 4.3 ± 0.3% was observed after 30 kGy of gamma accumulated dose. Transit dosimetry measurements through a homogeneous Solid Water phantom had a measured dose within error of the TPS calculations, for field sizes between 3 × 3 cm2 and 10 × 10 cm2. A four-fraction collapsed IMRT plan on a lung phantom had absolute dose pass fractions between the MP987 and TPS (treatment planning system) from 94.2% to 97.4%, with a 5%/5 mm criteria. The ability to accurately measure dose at a transit level, without the need for correction factors derived from extensive commissioning data collection procedures, makes the MP987 a viable alternative to the EPID for in vivo dosimetry. This MP987 is this first of its kind to be successfully developed specifically for a dual detector application.


Author(s):  
L. Jose Solomon Raj ◽  
Benedicta Pearlin ◽  
B. S. Timothy Peace ◽  
Rajesh Isiah ◽  
I. Rabi Raja Singh

Abstract Aim: This study reveals the characteristic nature and the use of optically stimulated luminescence dosimeters (OSLD) as an in vivo dosimetry tool for head and neck intensity-modulated radiation therapy (IMRT). Materials and methods: Calibration and characterisation of OSLD such as sensitivity, reproducibility, dose-rate dependence, beam quality dependence, output factor measurement and comparison of two bleaching techniques using halogen and compact fluorescent lamp (CFL) were initially performed. Later, eye dose measurements were performed for head and neck IMRT patients using OSLD and were compared with the corresponding dose calculated by the treatment planning system (TPS). Results: While the sensitivity was found to be within ±5%, the dose-rate dependence and reproducibility were found to be within ±3%. The OSLD showed an under-response of 3% for 15 MV and an increase in response by 5% for Co60 (1·25 MeV) when compared with the 6 MV X-ray beam. Therefore, a separate calibration for different beam energies is required. The percentage deviation of OSLD to that of TPS was found to be within ±2·77%. The OSLD has been successfully used for the in vivo dosimetry of patients who received IMRT. Hence, it is concluded that OSLDs can serve as effective dosimeters for in vivo dosimetry.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Vanessa Da Silva Mendes ◽  
Lukas Nierer ◽  
Minglun Li ◽  
Stefanie Corradini ◽  
Michael Reiner ◽  
...  

Abstract Background The aim of this study was to evaluate and compare the performance of intensity modulated radiation therapy (IMRT) plans, planned for low-field strength magnetic resonance (MR) guided linear accelerator (linac) delivery (labelled IMRT MRL plans), and clinical conventional volumetric modulated arc therapy (VMAT) plans, for the treatment of prostate cancer (PCa). Both plans used the original planning target volume (PTV) margins. Additionally, the potential dosimetric benefits of MR-guidance were estimated, by creating IMRT MRL plans using smaller PTV margins. Materials and methods 20 PCa patients previously treated with conventional VMAT were considered. For each patient, two different IMRT MRL plans using the low-field MR-linac treatment planning system were created: one with original (orig.) PTV margins and the other with reduced (red.) PTV margins. Dose indices related to target coverage, as well as dose-volume histogram (DVH) parameters for the target and organs at risk (OAR) were compared. Additionally, the estimated treatment delivery times and the number of monitor units (MU) of each plan were evaluated. Results The dose distribution in the high dose region and the target volume DVH parameters (D98%, D50%, D2% and V95%) were similar for all three types of treatment plans, with deviations below 1% in most cases. Both IMRT MRL plans (orig. and red. PTV margins) showed similar homogeneity indices (HI), however worse values for the conformity index (CI) were also found when compared to VMAT. The IMRT MRL plans showed similar OAR sparing when the orig. PTV margins were used but a significantly better sparing was feasible when red. PTV margins were applied. Higher number of MU and longer predicted treatment delivery times were seen for both IMRT MRL plans. Conclusions A comparable plan quality between VMAT and IMRT MRL plans was achieved, when applying the same PTV margin. However, online MR-guided adaptive radiotherapy allows for a reduction of PTV margins. With a red. PTV margin, better sparing of the surrounding tissues can be achieved, while maintaining adequate target coverage. Nonetheless, longer treatment delivery times, characteristic for the IMRT technique, have to be expected.


2016 ◽  
Author(s):  
◽  
Jason Stanford

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Advance treatment techniques, such as IMRT and dynamic conformal arc delivery, are novel radiation treatment procedures at the forefront of accurate and precise radiotherapy. However, the risk of suboptimal treatment resulting in injury is far greater with these techniques due to their complexity. An in vivo quality assurance system is the most appropriate validation of the delivered dose to the patient from these techniques. The intent of this research is to propose an in vivo dosimetry quality assurance procedure using radiochromic film. This research proved that radiochromic in vivo dosimetry is a viable method of detecting spatial patient specific errors in radiotherapy; however, the process is time consuming and not sensitive enough for dosimetric errors associated with weight change. Although time consuming, in vivo radiochromic dosimetry is an attractive alternative for small cancer centers and developing countries without the large startup capital to acquire the electronic portal imaging device necessary for EPID in vivo dosimetry.


2018 ◽  
Vol 52 ◽  
pp. 21
Author(s):  
Liheng Tian ◽  
Georgios Dedes ◽  
Guillaume Landry ◽  
Florian Kamp ◽  
Katharina Niepel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document