Evaluation of the surface dose for total body irradiation (TBI) technique with parallel-opposed anterior posterior geometry

Author(s):  
Hoseinnezhadzarghani Elham ◽  
Geraily Ghazale ◽  
Sarvin Sarmadi

Abstract Aim: Total body irradiation (TBI) is an external radiotherapy technique in which the whole body including the superficial regions is required to receive the therapeutic dose. The purpose of this study is to evaluate the received surface dose during TBI technique. Methods and materials: The anterior/posterior (AP/PA) TBI was implemented with 18-MV photon beam at 312-cm treatment distance for human-like phantom. The GAFCHROMIC-EBT3 films were used for superficial dose measurements. Results and discussion: The percentage of surface-absorbed dose relative to the prescription point for 8 points of measurements was between 102·78–121·48% and 104·51–127·43% at 5 and 10 mm depth, respectively. In the chest wall region due to the presence of lung blocks, the absorbed dose was below the acceptable level, so an electron boost was required to increase the chest wall absorbed dose. Conclusions: According to the results, the implemented technique was able to deliver sufficient dose to the shallow surface of phantom’s body.

Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5640
Author(s):  
Michael Oertel ◽  
Jonas Martel ◽  
Jan-Henrik Mikesch ◽  
Sergiu Scobioala ◽  
Christian Reicherts ◽  
...  

Total body irradiation is an effective conditioning modality before autologous or allogeneic stem cell transplantation. With the whole body being the radiation target volume, a diverse spectrum of toxicities has been reported. This fact prompted us to investigate the long-term sequelae of this treatment concept in a large patient cohort. Overall, 322 patients with acute leukemia or myelodysplastic syndrome with a minimum follow-up of one year were included (the median follow-up in this study was 68 months). Pulmonary, cardiac, ocular, neurological and renal toxicities were observed in 23.9%, 14.0%, 23.6%, 23.9% and 20.2% of all patients, respectively. The majority of these side effects were grades 1 and 2 (64.9–89.2% of all toxicities in the respective categories). The use of 12 Gray total body irradiation resulted in a significant increase in ocular toxicities (p = 0.013) and severe mucositis (p < 0.001). Renal toxicities were influenced by the age at transplantation (relative risk: 1.06, p < 0.001) and disease entity. In summary, total body irradiation triggers a multifaceted, but manageable, toxicity profile. Except for ocular toxicities and mucositis, a 12 Gray regimen did not lead to an increase in long-term side effects.


Dose-Response ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 155932582095133
Author(s):  
Cuihua Liu ◽  
Kaoru Tanaka ◽  
Takanori Katsube ◽  
Guillaume Varès ◽  
Kouichi Maruyama ◽  
...  

Application of green fluorescent protein (GFP) in a variety of biosystems as a unique bioindicator or biomarker has revolutionized biological research and made groundbreaking achievements, while increasing evidence has shown alterations in biological properties and physiological functions of the cells and animals overexpressing transgenic GFP. In this work, response to total body irradiation (TBI) was comparatively studied in GFP transgenic C57BL/6-Tg (CAG-EGFP) mice and C57BL/6 N wild type mice. It was demonstrated that GFP transgenic mice were more sensitive to radiation-induced bone marrow death, and no adaptive response could be induced. In the nucleated bone marrow cells of GFP transgenic mice exposed to a middle dose, there was a significant increase in both the percentage of cells expressing pro-apoptotic gene Bax and apoptotic cell death. While in wild type cells, lower expression of pro-apoptotic gene Bax and higher expression of anti-apoptotic gene Bcl-2, and significant lower induction of apoptosis were observed compared to GFP transgenic cells. Results suggest that presence of GFP could alter response to TBI at whole body, cellular and molecular levels in mice. These findings indicate that there could be a major influence on the interpretation of the results obtained in GFP transgenic mice.


2009 ◽  
Vol 36 (6Part12) ◽  
pp. 2580-2580 ◽  
Author(s):  
C Esquivel ◽  
M Smith ◽  
S Stathakis ◽  
A Gutiérrez ◽  
C Shi ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Chae-Seon Hong ◽  
Min-Joo Kim ◽  
Jihun Kim ◽  
Kyung Hwan Chang ◽  
Kwangwoo Park ◽  
...  

Abstract Background Tomotherapy-based total body irradiation (TBI) is performed using the head-first position (HFP) and feet-first position (FFP) due to treatment length exceeding the 135 cm limit. To reduce the dosimetric variation at the match lines, we propose and verify a volumetric gradient matching technique (VGMT) by combining TomoHelical (TH) and TomoDirect (TD) modes. Methods Two planning CT image sets were acquired with HFP and FFP using 15 × 55 × 18 cm3 of solid water phantom. Planning target volume (PTV) was divided into upper, lower, and gradient volumes. The junction comprised 2-cm thick five and seven gradient volumes (5-GVs and 7-GVs) to create a dose distribution with a gentle slope. TH-IMRT and TD-IMRT plans were generated with 5-GVs and 7-GVs. The setup error in the calculated dose was assessed by shifting dose distribution of the FFP plan by 5, 10, 15, and 20 mm in the longitudinal direction and comparing it with the original. Doses for 95% (D95) and 5% of the PTV (D5) were calculated for all simulated setup error plans. Absolute dose measurements were performed using an ionization chamber in the junction. Results The TH&TD plan produced a linear gradient in junction volume, comparable to that of the TH&TH plan. D5 of the PTV was 110% of the prescribed dose when the FFP plan was shifted 0.7 cm and 1.2 cm in the superior direction for 5-GVs and 7-GVs. D95 of the PTV decreased to < 90% of the prescribed dose when the FF plan was shifted 1.1 cm and 1.3 cm in the inferior direction for 5-GVs and 7-GVs. The absolute measured dose showed a good correlation with the calculated dose in the gradient junction volume. The average percent difference (±SD) in all measured points was − 0.7 ± 1.6%, and the average dose variations between depths was − 0.18 ± 1.07%. Conclusion VGMT can create a linear dose gradient across the junction area in both TH&TH and TH&TD and can minimize the dose sensitivity to longitudinal setup errors in tomotherapy-based TBI.


2002 ◽  
Vol 80 (7) ◽  
pp. 686-693 ◽  
Author(s):  
F Lebrun ◽  
M Benderitter ◽  
A Berroud ◽  
P Voisin ◽  
N M Griffiths

Our study emphasizes the effect of gamma irradiation on intestinal cell membrane fluidity and addresses the potential relationships existing between radiation-induced lipoperoxidation, membrane fluidity, and changes in membrane protein activities. Male Wistar rats were exposed to an 8-Gy total body irradiation (60Co source) and studied 1, 4, and 7 days after irradiation (D1, D4, and D7). Membrane enzyme activities and fluorescence anisotropy were determined on small intestinal crude membrane preparations. The supernatants of membrane preparations as well as plasma were used for malonedialdehyde (MDA) quantification. The effect of carbamylcholine on electrical parameters was estimated on distal ileum placed in Ussing chambers. We observed a decrease in fluorescence anisotropy for at least 7 days, an increase in membrane production of MDA at D4, a decrease in membrane enzyme activities at D4, but an amplification of carbamylcholine-induced increase in short-circuit current at D4 and D7. Furthermore, correlations were observed between the 1,6-diphenyl-1,3,5-hexatriene anisotropy coefficient and sucrase activity and between MDA levels and leucine aminopeptidase activity. Thus, total body irradiation induces changes in intestinal membrane fluidity and an increase in lipoperoxidation. These modifications may have an impact on the activity of membrane proteins involved in intestinal function.Key words: irradiation, intestine, membrane, fluidity, function.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Takuya Uehara ◽  
Hajime Monzen ◽  
Mikoto Tamura ◽  
Masahiro Inada ◽  
Masakazu Otsuka ◽  
...  

Abstract Background The use of total body irradiation (TBI) with linac-based volumetric modulated arc therapy (VMAT) has been steadily increasing. Helical tomotherapy has been applied in TBI and total marrow irradiation to reduce the dose to critical organs, especially the lungs. However, the methodology of TBI with Halcyon™ linac remains unclear. This study aimed to evaluate whether VMAT with Halcyon™ linac can be clinically used for TBI. Methods VMAT planning with Halcyon™ linac was conducted using a whole-body computed tomography data set. The planning target volume (PTV) included the body cropped 3 mm from the source. A dose of 12 Gy in six fractions was prescribed for 50% of the PTV. The organs at risk (OARs) included the lens, lungs, kidneys, and testes. Results The PTV D98%, D95%, D50%, and D2% were 8.9 (74.2%), 10.1 (84.2%), 12.6 (105%), and 14.2 Gy (118%), respectively. The homogeneity index was 0.42. For OARs, the Dmean of the lungs, kidneys, lens, and testes were 9.6, 8.5, 8.9, and 4.4 Gy, respectively. The V12Gy of the lungs and kidneys were 4.5% and 0%, respectively. The Dmax of the testes was 5.8 Gy. Contouring took 1–2 h. Dose calculation and optimization was performed for 3–4 h. Quality assurance (QA) took 2–3 h. The treatment duration was 23 min. Conclusions A planning study of TBI with Halcyon™ to set up VMAT-TBI, dosimetric evaluation, and pretreatment QA, was established.


2009 ◽  
Vol 36 (6Part7) ◽  
pp. 2503-2503
Author(s):  
M Sharma ◽  
S Hui ◽  
N Bird ◽  
T Dos Santos ◽  
N Papanikolopoulos

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Challapalli Srinivas ◽  
Dilson Lobo ◽  
Sourjya Banerjee ◽  
MS Athiyamaan ◽  
Shreyas Reddy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document