scholarly journals Central vasopressin V1A receptor blockade alters patterns of cellular activation and prevents glucocorticoid habituation to repeated restraint stress exposure

2014 ◽  
Vol 17 (12) ◽  
pp. 2005-2015 ◽  
Author(s):  
Megan Gray ◽  
Leyla Innala ◽  
Victor Viau
2016 ◽  
Vol 23 (1) ◽  
pp. 80-89 ◽  
Author(s):  
Ryan M. Glynn ◽  
J. Amiel Rosenkranz ◽  
Marina E. Wolf ◽  
Aaron Caccamise ◽  
Freya Shroff ◽  
...  

Critical Care ◽  
2019 ◽  
Vol 23 (1) ◽  
Author(s):  
Richard Truse ◽  
Steven Grewe ◽  
Anna Herminghaus ◽  
Jan Schulz ◽  
Andreas P. M. Weber ◽  
...  

Abstract Background Hypercapnia improves gastric microcirculatory oxygenation (μHbO2) and increases vasopressin plasma levels, whereas V1A receptor blockade abolishes the increase of μHbO2. The aim of this study was to evaluate the effect of exogenous vasopressin (AVP) in increasing doses on microcirculatory perfusion and oxygenation and systemic hemodynamic variables. Furthermore, we evaluated the role of the vasopressin V1A receptor in mediating the effects. Methods In repetitive experiments, six anesthetized dogs received a selective vasopressin V1A receptor inhibitor ([Pmp1, Tyr (Me)2]-Arg8-Vasopressin) or sodium chloride (control groups). Thereafter, a continuous infusion of AVP was started with dose escalation every 30 min (0.001 ng/kg/min–1 ng/kg/min). Microcirculatory variables of the oral and gastric mucosa were measured with reflectance spectrometry, laser Doppler flowmetry, and incident dark field imaging. Transpulmonary thermodilution was used to measure systemic hemodynamic variables. AVP plasma concentrations were measured during baseline conditions and 30 min after each dose escalation. Results During control conditions, gastric μHbO2 did not change during the course of experiments. Infusion of 0.001 ng/kg/min and 0.01 ng/kg/min AVP increased gastric μHbO2 to 87 ± 4% and 87 ± 6%, respectively, compared to baseline values (80 ± 7%), whereas application of 1 ng/kg/min AVP strongly reduced gastric μHbO2 (59 ± 16%). V1A receptor blockade prior to AVP treatment abolished these effects on μHbO2. AVP dose-dependently enhanced systemic vascular resistance (SVR) and decreased cardiac output (CO). After prior V1A receptor blockade, SVR was reduced and CO increased (0.1 ng/kg/min + 1 ng/kg/min AVP). Conclusions Exogenous AVP dose-dependently modulates gastric μHbO2, with an increased μHbO2 with ultra-low dose AVP. The effects of AVP on μHbO2 are abolished by V1A receptor inhibition. These effects are independent of a modulation of systemic hemodynamic variables.


1992 ◽  
Vol 267 (32) ◽  
pp. 23282-23289 ◽  
Author(s):  
M.H. Nathanson ◽  
M.S. Moyer ◽  
A.D. Burgstahler ◽  
A.M. O'Carroll ◽  
M.J. Brownstein ◽  
...  

2007 ◽  
Vol 0 (0) ◽  
pp. 071115085713008-??? ◽  
Author(s):  
Zsuzsanna E. Tóth ◽  
Dóra Zelena ◽  
Zsuzsa Mergl ◽  
Eszter Kirilly ◽  
Péter Várnai ◽  
...  

1999 ◽  
Vol 113 (5) ◽  
pp. 902-913 ◽  
Author(s):  
Cheryl D. Conrad ◽  
Ana María Magariños ◽  
Joseph E. LeDoux ◽  
Bruce S. McEwen

Sign in / Sign up

Export Citation Format

Share Document