scholarly journals Central Vasopressin V1A Receptor Blockade Impedes Hypothalamic–Pituitary–Adrenal Habituation to Repeated Restraint Stress Exposure in Adult Male Rats

2012 ◽  
Vol 37 (12) ◽  
pp. 2712-2719 ◽  
Author(s):  
Megan Gray ◽  
Leyla Innala ◽  
Victor Viau
2006 ◽  
Vol 290 (5) ◽  
pp. R1366-R1373 ◽  
Author(s):  
Jennifer A. Shoener ◽  
Romana Baig ◽  
Kathleen C. Page

Glucocorticoids are essential for normal hypothalamic-pituitary-adrenal (HPA) axis activity; however, recent studies warn that exposure to excess endogenous or synthetic glucocorticoid during a specific period of prenatal development adversely affects HPA axis stability. We administered dexamethasone (DEX) to pregnant rats during the last week of gestation and investigated subsequent HPA axis regulation in adult male offspring in unrestrained and restraint-stressed conditions. With the use of real-time PCR and RIA, we examined the expression of regulatory genes in the hippocampus, hypothalamus, and pituitary, including corticotropin-releasing hormone (CRH), arginine vasopressin (AVP), glucocorticoid receptors (GR), mineralcorticoid receptors (MR), and 11-β-hydroxysteroid dehydrogenase-1 (11β-HSD-1), as well as the main HPA axis hormones, adrenal corticotropic hormone (ACTH) and corticosterone (CORT). Our results demonstrate that the DEX-exposed group exhibited an overall change in the pattern of gene expression and hormone levels in the unrestrained animals. These changes included an upregulation of CRH in the hypothalamus, a downregulation of MR with a concomitant upregulation of 11β-HSD-1 in the hippocampus, and an increase in circulating levels of both ACTH and CORT relative to unrestrained control animals. Interestingly, both DEX-exposed and control rats exhibited an increase in pituitary GR mRNA levels following a 1-h recovery from restraint stress; however, the increased expression in DEX-exposed rats was significantly less and was associated with a slower return to baseline CORT compared with controls. In addition, circulating levels of ACTH and CORT as well as hypothalamic CRH and hippocampal 11β-HSD-1 expression levels were significantly higher in the DEX-exposed group compared with controls following restraint stress. Taken together, these data demonstrate that late-gestation DEX exposure in rats is associated with persistent changes in both the modulation of HPA axis activity and the HPA axis-mediated response to stress.


2016 ◽  
Vol 23 (1) ◽  
pp. 80-89 ◽  
Author(s):  
Ryan M. Glynn ◽  
J. Amiel Rosenkranz ◽  
Marina E. Wolf ◽  
Aaron Caccamise ◽  
Freya Shroff ◽  
...  

2018 ◽  
Vol 30 (2) ◽  
pp. 265-273
Author(s):  
Rajiv Balyan ◽  
Ma Cai ◽  
Wenhong Zhao ◽  
Zhao Dai ◽  
Yujia Zhai ◽  
...  

Abstract BackgroundSulfotransferases (SULTs) are phase II drug-metabolizing enzymes. SULTs also regulate the biological activities of biological signaling molecules, such as various hormones, bile acids, and monoamine neurotransmitters; therefore, they play critical roles in the endocrine and nervous systems. People are subject to various kinds of physical, chemical, toxicological, physiological, and psychological stresses at one time or another. The study of the effects produced by stress may lead to finding novel remedies for many disease conditions. The effect of repeated restraint stress on rat SULT expression has not been studied. MethodsThis study involves the effect of repeated restraint stress on SULT1A1 expressions. Male Sprague-Dawley rats (n=4) were subjected to repeated restraint stress 2 h/day for 7 days. Protein and RNA expression of SULT1A1 were analyzed by western blot and quantitative real time reverse transcription polymerase chain reaction, respectively, in important tissues. ResultsWe observed that repeated restraint stress increased the expression of SULT1A1 in the liver, adrenal glands, cerebellum, hypothalamus, and cerebral cortex in male rats. Patterns of enhanced expression were observed at both mRNA and protein level, indicating that repeated restraint stress stimulates enzyme expression at the transcriptional level. ConclusionsChanges of SULT1A1 expression in important tissues caused by repeated restraint stress will have a significant effect on drug metabolism and xenobiotics detoxification. The significant changes in endocrine glands and brain sections may also cause disturbances in hormone homeostasis, therefore leading to disease conditions. This report provides clues for the understanding of the effect of stresses on health.


Sign in / Sign up

Export Citation Format

Share Document