prolactin releasing peptide
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 24)

H-INDEX

36
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Lucia Mráziková ◽  
Barbora Neprašová ◽  
Anna Mengr ◽  
Andrea Popelová ◽  
Veronika Strnadová ◽  
...  

Obesity and type 2 diabetes mellitus (T2DM) are preconditions for the development of metabolic syndrome, which is reaching pandemic levels worldwide, but there are still only a few anti-obesity drugs available. One of the promising tools for the treatment of obesity and related metabolic complications is anorexigenic peptides, such as prolactin-releasing peptide (PrRP). PrRP is a centrally acting neuropeptide involved in food intake and body weight (BW) regulation. In its natural form, it has limitations for peripheral administration; thus, we designed analogs of PrRP lipidized at the N-terminal region that showed high binding affinities, increased stability and central anorexigenic effects after peripheral administration. In this review, we summarize the preclinical results of our chronic studies on the pharmacological role of the two most potent palmitoylated PrRP31 analogs in various mouse and rat models of obesity, glucose intolerance, and insulin resistance. We used mice and rats with diet-induced obesity fed a high-fat diet, which is considered to simulate the most common form of human obesity, or rodent models with leptin deficiency or disrupted leptin signaling in which long-term food intake regulation by leptin is distorted. The rodent models described in this review are models of metabolic syndrome with different severities, such as obesity or morbid obesity, prediabetes or diabetes and hypertension. We found that the effects of palmitoylated PrRP31 on food intake and BW but not on glucose intolerance require intact leptin signaling. Thus, palmitoylated PrRP31 analogs have potential as therapeutics for obesity and related metabolic complications.


2021 ◽  
Vol 67 (5) ◽  
pp. 29-33
Author(s):  
D. A. Zhukov ◽  
A. G. Markov ◽  
E. P. Vinogradova

BACKGROUND: Prolactin-releasing peptide(Prl-RP), in addition to stimulating the production of prolactin, interacts with various parts of the central nervous system, participating in the implementation of many functions that are reflected in behavior.AIM: The effect of Prl-RP on the anxiety of white Wistar rats was studied since there were no data in the literature on the relationship between Prl-RP and anxiety.MATERIALS AND METHODS: Anxiety was assessed in two tests. In the elevated plus-maze (EPM), the time spent in the open arms and the number of edge reactions were recorded. In the social preference test, the time spent near a stranger, near a familiar individual, and in neutral territory were recorded.RESULTS: The administration of Prl-RP at a dose of 10-10 M with a volume of 10 µl in each nostril reduced the time spent by the animals in the open arms of the EPM, and the number of edge reactions. For testing the social interaction, animals were pre-selected for high or low levels of anxiety in the EPM. In rats with initially low levels of anxiety, Prl-RP reduced the time spent near a stranger, indicating an increase in anxiety levels. The behavior of rats with initially high levels of anxiety did not change after application of the Prl-RP.CONCLUSION: The results of our experiments indicate that the intranasal administration of Prl-RP increases the anxiety of rats.


2021 ◽  
Vol 18 ◽  
Author(s):  
Anna Mengr ◽  
Lucie Hrubá ◽  
Aneta Exnerová ◽  
Martina Holubová ◽  
Andrea Popelová ◽  
...  

Background: Prolactin-releasing peptide (PrRP) is a potential drug for the treatment of obesity and associated type 2 diabetes mellitus (T2DM) due to its strong anorexigenic and antidiabetic properties. In our recent study, the lipidized PrRP analog palm11-PrRP31 was proven to exert beneficial effects in APP/PS1 mice, a model of Alzheimer´s disease (AD)-like amyloid-β (Aβ) pathology, reducing the Aβ plaque load, microgliosis and astrocytosis in the hippocampus and cortex. Objective: In this study, we focused on the neuroprotective and anti-inflammatory effects of palm11-PrRP31 and its possible impact on synaptogenesis in the cerebellum of APP/PS1 mice, because others have suggested that cerebellar Aβ plaques contribute to cognitive deficits in AD. Methods: APP/PS1 mice were treated subcutaneously with palm11-PrRP31 for 2 months, then immunoblotting and immunohistochemistry were used to quantify pathological markers connected to AD, compared to control mice. Results: In the cerebella of 8 months old APP/PS1 mice, we found widespread Aβ plaques surrounded by activated microglia detected by ionized calcium-binding adapter molecule (Iba1), but no increase in astrocytic marker glial fibrillary acidic protein (GFAP) compared to controls. Interestingly, no difference in both presynaptic markers syntaxin1A and postsynaptic marker spinophilin was registered between APP/PS1 and control mice. Palm11-PrRP31 treatment significantly reduced the Aβ plaque load and microgliosis in the cerebellum. Furthermore, palm11-PrRP31 increased synaptogenesis and attenuated neuroinflammation and apoptosis in the hippocampus of APP/PS1 mice. Conclusion: These results suggest palm11-PrRP31 is a promising agent for the treatment of neurodegenerative disorders.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Vanni Caruso ◽  
Rebecca Hills ◽  
Malin Lagerstrom ◽  
Tatsushi Onaka ◽  
Helgi Schiöth

The precursor (PRLH, P81277) for PrRP generates 31 and 20-amino-acid versions. QRFP43 (43RFa) (named after a pyroglutamylated arginine-phenylalanine-amide peptide) is a 43 amino acid peptide derived from QRFP (P83859) and is also known as P518 or 26RFa. RFRP is an RF amide-related peptide [31] derived from a FMRFamide-related peptide precursor (NPVF, Q9HCQ7), which is cleaved to generate neuropeptide SF, neuropeptide RFRP-1, neuropeptide RFRP-2 and neuropeptide RFRP-3 (neuropeptide NPVF).


2021 ◽  
pp. 579-590
Author(s):  
Zdenko Pirník ◽  
Lucia Kořínková ◽  
Jana Osacká ◽  
Blanka Železná ◽  
Jaroslav Kuneš ◽  
...  

Prolactin-releasing peptide (PrRP) has been proposed to mediate the central satiating effects of cholecystokinin (CCK) through the vagal CCK1 receptor. PrRP acts as an endogenous ligand of G protein-coupled receptor 10 (GPR10), which is expressed at the highest levels in brain areas related to food intake regulation, e.g., the paraventricular hypothalamic nucleus (PVN) and nucleus of the solitary tract (NTS). The NTS and PVN are also significantly activated after peripheral CCK administration. The aim of this study was to determine whether the endogenous PrRP neuronal system in the brain is involved in the central anorexigenic effect of the peripherally administered CCK agonist JMV236 or the CCK1 antagonist devazepide and whether the CCK system is involved in the central anorexigenic effect of the peripherally applied lipidized PrRP analog palm-PrRP31 in fasted lean mice. The effect of devazepide and JMV236 on the anorexigenic effects of palm-PrRP31 as well as devazepide combined with JMV236 and palm-PrRP31 on food intake and Fos cell activation in the PVN and caudal NTS was examined. Our results suggest that the anorexigenic effect of JMV236 is accompanied by activation of PrRP neurons of the NTS in a CCK1 receptor-dependent manner. Moreover, while the anorexigenic effect of palm-PrRP31 was not affected by JMV236, it was partially attenuated by devazepide in fasted mice. The present findings indicate that the exogenously influenced CCK system may be involved in the central anorexigenic effect of peripherally applied palm-PrRP31, which possibly indicates some interaction between the CCK and PrRP neuronal systems.


2021 ◽  
Vol 22 (16) ◽  
pp. 8904
Author(s):  
Alena Karnošová ◽  
Veronika Strnadová ◽  
Lucie Holá ◽  
Blanka Železná ◽  
Jaroslav Kuneš ◽  
...  

The anorexigenic neuropeptide prolactin-releasing peptide (PrRP) is involved in the regulation of food intake and energy expenditure. Lipidization of PrRP stabilizes the peptide, facilitates central effect after peripheral administration and increases its affinity for its receptor, GPR10, and for the neuropeptide FF (NPFF) receptor NPFF-R2. The two most potent palmitoylated analogs with anorectic effects in mice, palm11-PrRP31 and palm-PrRP31, were studied in vitro to determine their agonist/antagonist properties and mechanism of action on GPR10, NPFF-R2 and other potential off-target receptors related to energy homeostasis. Palmitoylation of both PrRP31 analogs increased the binding properties of PrRP31 to anorexigenic receptors GPR10 and NPFF-R2 and resulted in a high affinity for another NPFF receptor, NPFF-R1. Moreover, in CHO-K1 cells expressing GPR10, NPFF-R2 or NPFF-R1, palm11-PrRP and palm-PrRP significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK), protein kinase B (Akt) and cAMP-responsive element-binding protein (CREB). Palm11-PrRP31, unlike palm-PrRP31, did not activate either c-Jun N-terminal kinase (JNK), p38, c-Jun, c-Fos or CREB pathways in cells expressing NPFF-1R. Palm-PrRP31 also has higher binding affinities for off-target receptors, namely, the ghrelin, opioid (KOR, MOR, DOR and OPR-L1) and neuropeptide Y (Y1, Y2 and Y5) receptors. Palm11-PrRP31 exhibited fewer off-target activities; therefore, it has a higher potential to be used as an anti-obesity drug with anorectic effects.


2021 ◽  
Vol 22 (9) ◽  
pp. 4456
Author(s):  
Yulong Sun ◽  
Zhuo Zuo ◽  
Yuanyuan Kuang

Prolactin-releasing Peptide (PrRP) is a neuropeptide whose receptor is GPR10. Recently, the regulatory role of PrRP in the neuroendocrine field has attracted increasing attention. However, the influence of PrRP on macrophages, the critical housekeeper in the neuroendocrine field, has not yet been fully elucidated. Here, we investigated the effect of PrRP on the transcriptome of mouse bone marrow-derived macrophages (BMDMs) with RNA sequencing, bioinformatics, and molecular simulation. BMDMs were exposed to PrRP (18 h) and were subjected to RNA sequencing. Differentially expressed genes (DEGs) were acquired, followed by GO, KEGG, and PPI analysis. Eight qPCR-validated DEGs were chosen as hub genes. Next, the three-dimensional structures of the proteins encoded by these hub genes were modeled by Rosetta and Modeller, followed by molecular dynamics simulation by the Gromacs program. Finally, the binding modes between PrRP and hub proteins were investigated with the Rosetta program. PrRP showed no noticeable effect on the morphology of macrophages. A total of 410 DEGs were acquired, and PrRP regulated multiple BMDM-mediated functional pathways. Besides, the possible docking modes between PrRP and hub proteins were investigated. Moreover, GPR10 was expressed on the cell membrane of BMDMs, which increased after PrRP exposure. Collectively, PrRP significantly changed the transcriptome profile of BMDMs, implying that PrRP may be involved in various physiological activities mastered by macrophages.


2021 ◽  
pp. 33-36
Author(s):  
Tetsuya Tachibana ◽  
Tatsuya Sakamoto

2020 ◽  
Vol 180 ◽  
pp. 108289
Author(s):  
Keila Navarro I Batista ◽  
Marissa Schraner ◽  
Thomas Riediger

Sign in / Sign up

Export Citation Format

Share Document