scholarly journals On equivalence of infinitary formulas under the stable model semantics

2014 ◽  
Vol 15 (1) ◽  
pp. 18-34 ◽  
Author(s):  
AMELIA HARRISON ◽  
VLADIMIR LIFSCHITZ ◽  
MIROSLAW TRUSZCZYNSKI

AbstractPropositional formulas that are equivalent in intuitionistic logic, or in its extension known as the logic of here-and-there, have the same stable models. We extend this theorem to propositional formulas with infinitely long conjunctions and disjunctions and show how to apply this generalization to proving properties of aggregates in answer set programming.

2019 ◽  
Vol 19 (5-6) ◽  
pp. 1006-1020 ◽  
Author(s):  
AMELIA HARRISON ◽  
VLADIMIR LIFSCHITZ

AbstractThe input language of the answer set solver clingo is based on the definition of a stable model proposed by Paolo Ferraris. The semantics of the ASP-Core language, developed by the ASP Standardization Working Group, uses the approach to stable models due to Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. The two languages are based on different versions of the stable model semantics, and the ASP-Core document requires, “for the sake of an uncontroversial semantics,” that programs avoid the use of recursion through aggregates. In this paper we prove that the absence of recursion through aggregates does indeed guarantee the equivalence between the two versions of the stable model semantics, and show how that requirement can be relaxed without violating the equivalence property.


2020 ◽  
Vol 176 (3-4) ◽  
pp. 271-297
Author(s):  
Mario Alviano ◽  
Carmine Dodaro

Many efficient algorithms for the computation of optimum stable models in the context of Answer Set Programming (ASP) are based on unsatisfiable core analysis. Among them, algorithm OLL was the first introduced in the context of ASP, whereas algorithms ONE and PMRES were first introduced for solving the Maximum Satisfiability problem (MaxSAT) and later on adapted to ASP. In this paper, we present the porting to ASP of another state-of-the-art algorithm introduced for MaxSAT, namely K, which generalizes ONE and PMRES. Moreover, we present a new algorithm called OLL-IN-ONE that compactly encodes all aggregates of OLL by taking advantage of shared aggregate sets propagators. The performance of the algorithms have been empirically compared on instances taken from the latest ASP Competition.


2020 ◽  
Vol 34 (03) ◽  
pp. 3017-3024
Author(s):  
Hai Wan ◽  
Guohui Xiao ◽  
Chenglin Wang ◽  
Xianqiao Liu ◽  
Junhong Chen ◽  
...  

In this paper, we study the problem of query answering with guarded existential rules (also called GNTGDs) under stable model semantics. Our goal is to use existing answer set programming (ASP) solvers. However, ASP solvers handle only finitely-ground logic programs while the program translated from GNTGDs by Skolemization is not in general. To address this challenge, we introduce two novel notions of (1) guarded instantiation forest to describe the instantiation of GNTGDs and (2) prime block to characterize the repeated infinitely-ground program translated from GNTGDs. Using these notions, we prove that the ground termination problem for GNTGDs is decidable. We also devise an algorithm for query answering with GNTGDs using ASP solvers. We have implemented our approach in a prototype system. The evaluation over a set of benchmarks shows encouraging results.


2015 ◽  
Vol 30 (4) ◽  
pp. 899-922 ◽  
Author(s):  
Joseph Babb ◽  
Joohyung Lee

Abstract Action languages are formal models of parts of natural language that are designed to describe effects of actions. Many of these languages can be viewed as high-level notations of answer set programs structured to represent transition systems. However, the form of answer set programs considered in the earlier work is quite limited in comparison with the modern Answer Set Programming (ASP) language, which allows several useful constructs for knowledge representation, such as choice rules, aggregates and abstract constraint atoms. We propose a new action language called BC +, which closes the gap between action languages and the modern ASP language. The main idea is to define the semantics of BC + in terms of general stable model semantics for propositional formulas, under which many modern ASP language constructs can be identified with shorthands for propositional formulas. Language BC  + turns out to be sufficiently expressive to encompass the best features of other action languages, such as languages B , C , C + and BC . Computational methods available in ASP solvers are readily applicable to compute BC +, which led to an implementation of the language by extending system cplus2asp .


2010 ◽  
Vol 10 (4-6) ◽  
pp. 481-496 ◽  
Author(s):  
SABRINA BASELICE ◽  
PIERO A. BONATTI

AbstractAnswer set programming—the most popular problem solving paradigm based on logic programs—has been recently extended to support uninterpreted function symbols (Syrjänen 2001, Bonatti 2004; Simkus and Eiter 2007; Gebseret al. 2007; Baseliceet al. 2009; Calimeriet al. 2008). All of these approaches have some limitation. In this paper we propose a class of programs called FP2 that enjoys a different trade-off between expressiveness and complexity. FP2 is inspired by the extension of finitary normal programs with local variables introduced in (Bonatti 2004, Section 5). FP2 programs enjoy the following unique combination of properties: (i) the ability of expressing predicates with infinite extensions; (ii) full support for predicates with arbitrary arity; (iii) decidability of FP2 membership checking; (iv) decidability of skeptical and credulous stable model reasoning for call-safe queries. Odd cycles are supported by composing FP2 programs with argument restricted programs.


2014 ◽  
Vol 50 ◽  
pp. 31-70 ◽  
Author(s):  
Y. Wang ◽  
Y. Zhang ◽  
Y. Zhou ◽  
M. Zhang

The ability of discarding or hiding irrelevant information has been recognized as an important feature for knowledge based systems, including answer set programming. The notion of strong equivalence in answer set programming plays an important role for different problems as it gives rise to a substitution principle and amounts to knowledge equivalence of logic programs. In this paper, we uniformly propose a semantic knowledge forgetting, called HT- and FLP-forgetting, for logic programs under stable model and FLP-stable model semantics, respectively. Our proposed knowledge forgetting discards exactly the knowledge of a logic program which is relevant to forgotten variables. Thus it preserves strong equivalence in the sense that strongly equivalent logic programs will remain strongly equivalent after forgetting the same variables. We show that this semantic forgetting result is always expressible; and we prove a representation theorem stating that the HT- and FLP-forgetting can be precisely characterized by Zhang-Zhou's four forgetting postulates under the HT- and FLP-model semantics, respectively. We also reveal underlying connections between the proposed forgetting and the forgetting of propositional logic, and provide complexity results for decision problems in relation to the forgetting. An application of the proposed forgetting is also considered in a conflict solving scenario.


10.29007/ngm2 ◽  
2018 ◽  
Author(s):  
Gopal Gupta ◽  
Elmer Salazar ◽  
Kyle Marple ◽  
Zhuo Chen ◽  
Farhad Shakerin

Answer Set Programming (ASP) has emerged as a successful paradigm for developing intelligent applications. ASP is based on adding negation as failure to logic programming under the stable model semantics regime. ASP allows for sophisticated reasoning mechanisms that are employed by humans to be modeled elegantly. We argue that being able to model common sense reasoning as used by humans is critical for success of automated reasoning. We also argue that extending answer programming systems to general predicates is critical to realizing the full power of ASP. Goal-directed predicate ASP systems are needed to make the ASP technology practical for building large, scalable knowledge-based applications.


2004 ◽  
Vol 4 (3) ◽  
pp. 325-354 ◽  
Author(s):  
MAURICIO OSORIO ◽  
JUAN A. NAVARRO ◽  
JOSÉ ARRAZOLA

We present some applications of intermediate logics in the field of Answer Set Programming (ASP). A brief, but comprehensive introduction to the answer set semantics, intuitionistic and other intermediate logics is given. Some equivalence notions and their applications are discussed. Some results on intermediate logics are shown, and applied later to prove properties of answer sets. A characterization of answer sets for logic programs with nested expressions is provided in terms of intuitionistic provability, generalizing a recent result given by Pearce. It is known that the answer set semantics for logic programs with nested expressions may select non-minimal models. Minimal models can be very important in some applications, therefore we studied them; in particular we obtain a characterization, in terms of intuitionistic logic, of answer sets which are also minimal models. We show that the logic G3 characterizes the notion of strong equivalence between programs under the semantic induced by these models. Finally we discuss possible applications and consequences of our results. They clearly state interesting links between ASP and intermediate logics, which might bring research in these two areas together.


2016 ◽  
Vol 17 (2) ◽  
pp. 226-243 ◽  
Author(s):  
FELICIDAD AGUADO ◽  
PEDRO CABALAR ◽  
GILBERTO PÉREZ ◽  
CONCEPCIÓN VIDAL ◽  
MARTÍN DIÉGUEZ

AbstractIn this note, we consider the problem of introducing variables in temporal logic programs under the formalism of Temporal Equilibrium Logic, an extension of Answer Set Programming for dealing with linear-time modal operators. To this aim, we provide a definition of a first-order version of Temporal Equilibrium Logic that shares the syntax of first-order Linear-time Temporal Logic but has different semantics, selecting some Linear-time Temporal Logic models we call temporal stable models. Then, we consider a subclass of theories (called splittable temporal logic programs) that are close to usual logic programs but allowing a restricted use of temporal operators. In this setting, we provide a syntactic definition of safe variables that suffices to show the property of domain independence – that is, addition of arbitrary elements in the universe does not vary the set of temporal stable models. Finally, we present a method for computing the derivable facts by constructing a non-temporal logic program with variables that is fed to a standard Answer Set Programming grounder. The information provided by the grounder is then used to generate a subset of ground temporal rules which is equivalent to (and generally smaller than) the full program instantiation.


2012 ◽  
Vol 12 (4-5) ◽  
pp. 719-735 ◽  
Author(s):  
JOSEPH BABB ◽  
JOOHYUNG LEE

AbstractThe module theorem by Janhunen et al. demonstrates how to provide a modular structure in answer set programming, where each module has a well-defined input/output interface which can be used to establish the compositionality of answer sets. The theorem is useful in the analysis of answer set programs, and is a basis of incremental grounding and reactive answer set programming. We extend the module theorem to the general theory of stable models by Ferraris et al. The generalization applies to non-ground logic programs allowing useful constructs in answer set programming, such as choice rules, the count aggregate, and nested expressions. Our extension is based on relating the module theorem to the symmetric splitting theorem by Ferraris et al. Based on this result, we reformulate and extend the theory of incremental answer set computation to a more general class of programs.


Sign in / Sign up

Export Citation Format

Share Document