scholarly journals Checking termination of bottom-up evaluation of logic programs with function symbols

2014 ◽  
Vol 15 (6) ◽  
pp. 854-889 ◽  
Author(s):  
MARCO CALAUTTI ◽  
SERGIO GRECO ◽  
FRANCESCA SPEZZANO ◽  
IRINA TRUBITSYNA

AbstractRecently, there has been an increasing interest in the bottom-up evaluation of the semantics of logic programs with complex terms. The presence of function symbols in the program may render the ground instantiation infinite, and finiteness of models and termination of the evaluation procedure, in the general case, are not guaranteed anymore. Since the program termination problem is undecidable in the general case, several decidable criteria (called program termination criteria) have been recently proposed. However, current conditions are not able to identify even simple programs, whose bottom-up execution always terminates. The paper introduces new decidable criteria for checking termination of logic programs with function symbols under bottom-up evaluation, by deeply analyzing the program structure. First, we analyze the propagation of complex terms among arguments by means of the extended version of the argument graph calledpropagation graph. The resulting criterion, calledacyclicity, generalizes most of the decidable criteria proposed so far. Next, we study how rules may activate each other and define a more powerful criterion, calledsafety. This criterion uses the so-calledsafety functionable to analyze how rules may activate each other and how the presence of some arguments in a rule limits its activation. We also study the application of the proposed criteria to bound queries and show that the safety criterion is well-suited to identify relevant classes of programs and bound queries. Finally, we propose a hierarchy of classes of terminating programs, calledk-safety, where thek-safe class strictly includes the (k-1)-safe class.

Author(s):  
Bart Bogaerts ◽  
Joost Vennekens ◽  
Marc Denecker

In many knowledge representation formalisms, a constructive semantics is defined based on sequential applications of rules or of a semantic operator. These constructions often share the property that rule applications must be delayed until it is safe to do so: until it is known that the condition that triggers the rule will remain to hold. This intuition occurs for instance in the well-founded semantics of logic programs and in autoepistemic logic. In this paper, we formally define the safety criterion algebraically. We study properties of so-called safe inductions and apply our theory to logic programming and autoepistemic logic. For the latter, we show that safe inductions manage to capture the intended meaning of a class of theories on which all classical constructive semantics fail.


Author(s):  
Céline Hocquette ◽  
Stephen H. Muggleton

Predicate Invention in Meta-Interpretive Learning (MIL) is generally based on a top-down approach, and the search for a consistent hypothesis is carried out starting from the positive examples as goals. We consider augmenting top-down MIL systems with a bottom-up step during which the background knowledge is generalised with an extension of the immediate consequence operator for second-order logic programs. This new method provides a way to perform extensive predicate invention useful for feature discovery. We demonstrate this method is complete with respect to a fragment of dyadic datalog. We theoretically prove this method reduces the number of clauses to be learned for the top-down learner, which in turn can reduce the sample complexity. We formalise an equivalence relation for predicates which is used to eliminate redundant predicates. Our experimental results suggest pairing the state-of-the-art MIL system Metagol with an initial bottom-up step can significantly improve learning performance.


2020 ◽  
Vol 34 (03) ◽  
pp. 3017-3024
Author(s):  
Hai Wan ◽  
Guohui Xiao ◽  
Chenglin Wang ◽  
Xianqiao Liu ◽  
Junhong Chen ◽  
...  

In this paper, we study the problem of query answering with guarded existential rules (also called GNTGDs) under stable model semantics. Our goal is to use existing answer set programming (ASP) solvers. However, ASP solvers handle only finitely-ground logic programs while the program translated from GNTGDs by Skolemization is not in general. To address this challenge, we introduce two novel notions of (1) guarded instantiation forest to describe the instantiation of GNTGDs and (2) prime block to characterize the repeated infinitely-ground program translated from GNTGDs. Using these notions, we prove that the ground termination problem for GNTGDs is decidable. We also devise an algorithm for query answering with GNTGDs using ASP solvers. We have implemented our approach in a prototype system. The evaluation over a set of benchmarks shows encouraging results.


1994 ◽  
Vol 124 (1) ◽  
pp. 93-125 ◽  
Author(s):  
Michael Codish ◽  
Dennis Dams ◽  
Eyal Yardeni

1995 ◽  
Vol 24 (4) ◽  
pp. 359-386 ◽  
Author(s):  
Anthony Karel Seda

Sign in / Sign up

Export Citation Format

Share Document