scholarly journals An ASP Methodology for Understanding Narratives about Stereotypical Activities

2018 ◽  
Vol 18 (3-4) ◽  
pp. 535-552 ◽  
Author(s):  
DANIELA INCLEZAN ◽  
QINGLIN ZHANG ◽  
MARCELLO BALDUCCINI ◽  
ANKUSH ISRANEY

AbstractWe describe an application of Answer Set Programming to the understanding of narratives about stereotypical activities, demonstrated via question answering. Substantial work in this direction was done by Erik Mueller, who modeled stereotypical activities as scripts. His systems were able to understand a good number of narratives, but could not process texts describing exceptional scenarios. We propose addressing this problem by using a theory of intentions developed by Blount, Gelfond, and Balduccini. We present a methodology in which we substitute scripts by activities (i.e., hierarchical plans associated with goals) and employ the concept of an intentional agent to reason about both normal and exceptional scenarios. We exemplify the application of this methodology by answering questions about a number of restaurant stories. This paper is under consideration for acceptance in TPLP.

Author(s):  
Jakob Suchan ◽  
Mehul Bhatt ◽  
Srikrishna Varadarajan

We demonstrate the need and potential of systematically integrated vision and semantics solutions for visual sensemaking (in the backdrop of autonomous driving). A general method for online visual sensemaking using answer set programming is systematically formalised and fully implemented. The method integrates state of the art in visual computing, and is developed as a modular framework usable within hybrid architectures for perception & control. We evaluate and demo with community established benchmarks KITTIMOD and MOT. As use-case, we focus on the significance of human-centred visual sensemaking ---e.g., semantic representation and explainability, question-answering, commonsense interpolation--- in safety-critical autonomous driving situations.


Author(s):  
Arindam Mitra ◽  
Peter Clark ◽  
Oyvind Tafjord ◽  
Chitta Baral

While in recent years machine learning (ML) based approaches have been the popular approach in developing endto-end question answering systems, such systems often struggle when additional knowledge is needed to correctly answer the questions. Proposed alternatives involve translating the question and the natural language text to a logical representation and then use logical reasoning. However, this alternative falters when the size of the text gets bigger. To address this we propose an approach that does logical reasoning over premises written in natural language text. The proposed method uses recent features of Answer Set Programming (ASP) to call external NLP modules (which may be based on ML) which perform simple textual entailment. To test our approach we develop a corpus based on the life cycle questions and showed that Our system achieves up to 18% performance gain when compared to standard MCQ solvers.


2012 ◽  
Vol 12 (4-5) ◽  
pp. 775-791 ◽  
Author(s):  
CHITTA BARAL ◽  
JURAJ DZIFCAK ◽  
MARCOS A. GONZALEZ ◽  
AARON GOTTESMAN

AbstractOur broader goal is to automatically translate English sentences into formulas in appropriate knowledge representation languages as a step towards understanding and thus answering questions with respect to English text. Our focus in this paper is on the language of Answer Set Programming (ASP). Our approach to translate sentences to ASP rules is inspired by Montague's use of lambda calculus formulas as meaning of words and phrases. With ASP as the target language the meaning of words and phrases are ASP-lambda formulas. In an earlier work we illustrated our approach by manually developing a dictionary of words and their ASP-lambda formulas. However such an approach is not scalable. In this paper our focus is on two algorithms that allow one to construct ASP-lambda formulas in an inverse manner. In particular the two algorithms take as input two lambda-calculus expressions G and H and compute a lambda-calculus expression F such that F with input as G, denoted by F@G, is equal to H; and similarly G@F = H. We present correctness and complexity results about these algorithms. To do that we develop the notion of typed ASP-lambda calculus theories and their orders and use it in developing the completeness results.


2008 ◽  
Vol 9 (4) ◽  
pp. 1-53 ◽  
Author(s):  
Stijn Heymans ◽  
Davy Van Nieuwenborgh ◽  
Dirk Vermeir

2013 ◽  
Vol 29 (18) ◽  
pp. 2320-2326 ◽  
Author(s):  
Carito Guziolowski ◽  
Santiago Videla ◽  
Federica Eduati ◽  
Sven Thiele ◽  
Thomas Cokelaer ◽  
...  

2016 ◽  
Vol 16 (5-6) ◽  
pp. 800-816 ◽  
Author(s):  
DANIELA INCLEZAN

AbstractThis paper presents CoreALMlib, an $\mathscr{ALM}$ library of commonsense knowledge about dynamic domains. The library was obtained by translating part of the Component Library (CLib) into the modular action language $\mathscr{ALM}$. CLib consists of general reusable and composable commonsense concepts, selected based on a thorough study of ontological and lexical resources. Our translation targets CLibstates (i.e., fluents) and actions. The resulting $\mathscr{ALM}$ library contains the descriptions of 123 action classes grouped into 43 reusable modules that are organized into a hierarchy. It is made available online and of interest to researchers in the action language, answer-set programming, and natural language understanding communities. We believe that our translation has two main advantages over its CLib counterpart: (i) it specifies axioms about actions in a more elaboration tolerant and readable way, and (ii) it can be seamlessly integrated with ASP reasoning algorithms (e.g., for planning and postdiction). In contrast, axioms are described in CLib using STRIPS-like operators, and CLib's inference engine cannot handle planning nor postdiction.


2018 ◽  
Vol 18 (3-4) ◽  
pp. 623-637 ◽  
Author(s):  
ARINDAM MITRA ◽  
CHITTA BARAL

AbstractOver the years the Artificial Intelligence (AI) community has produced several datasets which have given the machine learning algorithms the opportunity to learn various skills across various domains. However, a subclass of these machine learning algorithms that aimed at learning logic programs, namely the Inductive Logic Programming algorithms, have often failed at the task due to the vastness of these datasets. This has impacted the usability of knowledge representation and reasoning techniques in the development of AI systems. In this research, we try to address this scalability issue for the algorithms that learn answer set programs. We present a sound and complete algorithm which takes the input in a slightly different manner and performs an efficient and more user controlled search for a solution. We show via experiments that our algorithm can learn from two popular datasets from machine learning community, namely bAbl (a question answering dataset) and MNIST (a dataset for handwritten digit recognition), which to the best of our knowledge was not previously possible. The system is publicly available athttps://goo.gl/KdWAcV.


Sign in / Sign up

Export Citation Format

Share Document