scholarly journals RIGID ORBITS AND SHEETS IN REDUCTIVE LIE ALGEBRAS OVER FIELDS OF PRIME CHARACTERISTIC

2016 ◽  
Vol 17 (3) ◽  
pp. 583-613 ◽  
Author(s):  
Alexander Premet ◽  
David I. Stewart

Let$G$be a simple simply connected algebraic group over an algebraically closed field$k$of characteristic$p>0$with$\mathfrak{g}=\text{Lie}(G)$. We discuss various properties of nilpotent orbits in$\mathfrak{g}$, which have previously only been considered over$\mathbb{C}$. Using computational methods, we extend to positive characteristic various calculations of de Graaf with nilpotent orbits in exceptional Lie algebras. In particular, we classify those orbits which are reachable as well as those which satisfy a certain related condition due to Panyushev, and determine the codimension of the derived subalgebra$[\mathfrak{g}_{e},\mathfrak{g}_{e}]$in the centraliser$\mathfrak{g}_{e}$of any nilpotent element$e\in \mathfrak{g}$. Some of these calculations are used to show that the list of rigid nilpotent orbits in$\mathfrak{g}$, the classification of sheets of$\mathfrak{g}$and the distribution of the nilpotent orbits amongst them are independent of good characteristic, remaining the same as in the characteristic zero case. We also give a comprehensive account of the theory of sheets in reductive Lie algebras over algebraically closed fields of good characteristic.

Author(s):  
D. F. Holt ◽  
N. Spaltenstein

AbstractThe classification of the nilpotent orbits in the Lie algebra of a reductive algebraic group (over an algebraically closed field) is given in all the cases where it was not previously known (E7 and E8 in bad characteristic, F4 in characteristic 3). The paper exploits the tight relation with the corresponding situation over a finite field. A computer is used to study this case for suitable choices of the finite field.


2016 ◽  
Vol 19 (1) ◽  
pp. 235-258 ◽  
Author(s):  
David I. Stewart

Let $G$ be a simple simply connected exceptional algebraic group of type $G_{2}$, $F_{4}$, $E_{6}$ or $E_{7}$ over an algebraically closed field $k$ of characteristic $p>0$ with $\mathfrak{g}=\text{Lie}(G)$. For each nilpotent orbit $G\cdot e$ of $\mathfrak{g}$, we list the Jordan blocks of the action of $e$ on the minimal induced module $V_{\text{min}}$ of $\mathfrak{g}$. We also establish when the centralizers $G_{v}$ of vectors $v\in V_{\text{min}}$ and stabilizers $\text{Stab}_{G}\langle v\rangle$ of $1$-spaces $\langle v\rangle \subset V_{\text{min}}$ are smooth; that is, when $\dim G_{v}=\dim \mathfrak{g}_{v}$ or $\dim \text{Stab}_{G}\langle v\rangle =\dim \text{Stab}_{\mathfrak{g}}\langle v\rangle$.


2012 ◽  
Vol 11 (05) ◽  
pp. 1250088
Author(s):  
RICCARDO GHILONI

In this paper, we prove that the rings of quaternions and of octonions over an arbitrary real closed field are algebraically closed in the sense of Eilenberg and Niven. As a consequence, we infer that some reasonable algebraic closure conditions, including the one of Eilenberg and Niven, are equivalent on the class of centrally finite alternative division rings. Furthermore, we classify centrally finite alternative division rings satisfying such equivalent algebraic closure conditions: up to isomorphism, they are either the algebraically closed fields or the rings of quaternions over real closed fields or the rings of octonions over real closed fields.


1990 ◽  
Vol 55 (3) ◽  
pp. 1138-1142 ◽  
Author(s):  
Anand Pillay

We point out that a group first order definable in a differentially closed field K of characteristic 0 can be definably equipped with the structure of a differentially algebraic group over K. This is a translation into the framework of differentially closed fields of what is known for groups definable in algebraically closed fields (Weil's theorem).I restrict myself here to showing (Theorem 20) how one can find a large “differentially algebraic group chunk” inside a group defined in a differentially closed field. The rest of the translation (Theorem 21) follows routinely, as in [B].What is, perhaps, of interest is that the proof proceeds at a completely general (soft) model theoretic level, once Facts 1–4 below are known.Fact 1. The theory of differentially closed fields of characteristic 0 is complete and has quantifier elimination in the language of differential fields (+, ·,0,1, −1,d).Fact 2. Affine n-space over a differentially closed field is a Noetherian space when equipped with the differential Zariski topology.Fact 3. If K is a differentially closed field, k ⊆ K a differential field, and a and are in k, then a is in the definable closure of k ◡ iff a ∈ ‹› (where k ‹› denotes the differential field generated by k and).Fact 4. The theory of differentially closed fields of characteristic zero is totally transcendental (in particular, stable).


2008 ◽  
Vol 01 (02) ◽  
pp. 283-294 ◽  
Author(s):  
DAVID A. TOWERS

This paper is a further contribution to the extensive study by a number of authors of the subalgebra lattice of a Lie algebra. It is shown that, in certain circumstances, including for all solvable algebras, for all Lie algebras over algebraically closed fields of characteristic p > 0 that have absolute toral rank ≤ 1 or are restricted, and for all Lie algebras having the one-and-a-half generation property, the conditions of modularity and semi-modularity are equivalent, but that the same is not true for all Lie algebras over a perfect field of characteristic three. Semi-modular subalgebras of dimensions one and two are characterised over (perfect, in the case of two-dimensional subalgebras) fields of characteristic different from 2, 3.


2008 ◽  
Vol 11 ◽  
pp. 280-297 ◽  
Author(s):  
Willem A. de Graaf

AbstractLet G be a simple algebraic group over an algebraically closed field with Lie algebra g. Then the orbits of nilpotent elements of g under the adjoint action of G have been classified. We describe a simple algorithm for finding a representative of a nilpotent orbit. We use this to compute lists of representatives of these orbits for the Lie algebras of exceptional type. Then we give two applications. The first one concerns settling a conjecture by Elashvili on the index of centralizers of nilpotent orbits, for the case where the Lie algebra is of exceptional type. The second deals with minimal dimensions of centralizers in centralizers.


Sign in / Sign up

Export Citation Format

Share Document