The extracellular polymeric substance of the green alga Penium margaritaceum and its role in biofilm formation

Biofilms ◽  
2005 ◽  
Vol 2 (2) ◽  
pp. 129-144 ◽  
Author(s):  
D. S. Domozych ◽  
S. Kort ◽  
S. Benton ◽  
T. Yu

The desmid Penium margaritaceum is a common resident of biofilms of shallow Adirondack wetlands in New York State, USA. It was isolated and grown in the laboratory where it readily formed biofilms and produced large amounts of extracellular polymeric substance (EPS). The EPS was separated into two fractions: an EPS gel and soluble EPS. Both fractions were rich in xylose, fucose and glucuronic acid. The EPS gels contained large amounts of 3-linked, 4-linked and 3,4-linked fucose, 3,4-linked glucuronic acid and terminal xylose linkages. The EPS gel consisted of a fibrillar matrix that linked cells and cell substrate together. Immunofluorescence analysis using an anti-EPS antibody revealed that EPS secretion occurs in several different modes, which contributes to initial adhesion, capsule formation and gliding.

Author(s):  
Rengaswamy Rathi ◽  
Sathyaneson Satheesh

AbstractChlorination is a common antifouling method adopted by industrial units to minimize the fouling growth on cooling systems. In the present study, the effect of sodium hypochlorite on extracellular polymeric substance (EPS) production, hydrophobicity, cell adhesion and viability of marine bacteria involved in biofilm formation were assessed in laboratory condition. Two bacterial strains, tentatively identified as Alteromonas sp. and Pseudomonas sp. isolated from the surface of seaweeds were used as test organisms for the present study. The bacterial cultures were treated with sodium hypochlorite at 25% of the minimum inhibitory concentration. Results showed considerable variation in the production of EPS, viable counts, hydrophobicity and adhesion ability of bacteria treated with sodium hypochlorite. In general, the present study indicated that chlorination affects some important characteristics involved in the biofilm formation and thereby reduces the adhesion rate on surfaces.


2020 ◽  
Vol 86 (10) ◽  
Author(s):  
Yanpeng Yang ◽  
Sheng Ma ◽  
Yawen Xie ◽  
Muxue Wang ◽  
Ting Cai ◽  
...  

ABSTRACT Biofilm formation by Pseudomonas aeruginosa contributes to its survival on surfaces and represents a major clinical threat because of the increased tolerance of biofilms to disinfecting agents. This study aimed to investigate the efficacy of 405-nm light-emitting diode (LED) illumination in eliminating P. aeruginosa biofilms formed on stainless steel coupons under different temperatures. Time-dependent killing assays using planktonic and biofilm cells were used to determine the antimicrobial and antibiofilm activities of LED illumination. We also evaluated the effects of LED illumination on the disinfectant susceptibility, biofilm structure, extracellular polymeric substance (EPS) structure and composition, and biofilm-related gene expression of P. aeruginosa biofilm cells. Results showed that the abundance of planktonic P. aeruginosa cells was reduced by 0.88, 0.53, and 0.85 log CFU/ml following LED treatment for 2 h compared with untreated controls at 4, 10, and 25°C, respectively. For cells in biofilms, significant reductions (1.73, 1.59, and 1.68 log CFU/cm2) were observed following LED illumination for 2 h at 4, 10, and 25°C, respectively. Moreover, illuminated P. aeruginosa biofilm cells were more sensitive to benzalkonium chloride or chlorhexidine than untreated cells. Scanning electron microscopy and confocal laser scanning microscopic observation indicated that both the biofilm structure and EPS structure were disrupted by LED illumination. Further, reverse transcription-quantitative PCR revealed that LED illumination downregulated the transcription of several genes associated with biofilm formation. These findings suggest that LED illumination has the potential to be developed as an alternative method for prevention and control of P. aeruginosa biofilm contamination. IMPORTANCE Pseudomonas aeruginosa can form biofilms on medical implants, industrial equipment, and domestic surfaces, contributing to high morbidity and mortality rates. This study examined the antibiofilm activity of 405-nm light-emitting diode (LED) illumination against mature biofilms formed on stainless steel coupons. We found that the disinfectant susceptibility, biofilm structure, and extracellular polymeric substance structure and composition were disrupted by LED illumination. We then investigated the transcription of several critical P. aeruginosa biofilm-related genes and analyzed the effect of illumination temperature on the above characteristics. Our results confirmed that LED illumination could be developed into an effective and safe method to counter P. aeruginosa biofilm contamination. Further research will be focused on the efficacy and application of LED illumination for elimination of complicated biofilms in the environment.


Nanoscale ◽  
2018 ◽  
Vol 10 (41) ◽  
pp. 19603-19611 ◽  
Author(s):  
Shima Liu ◽  
Shuting Cao ◽  
Jingyang Guo ◽  
Liqiang Luo ◽  
Yi Zhou ◽  
...  

GO-AgNPs composites can effectively modulate biofilm development and extracellular polymeric substance (EPS) production at an appropriate concentration.


Soft Matter ◽  
2014 ◽  
Vol 10 (44) ◽  
pp. 8923-8931 ◽  
Author(s):  
Xiaohui Sun ◽  
Qingye Lu ◽  
Yaman Boluk ◽  
Yang Liu

Deposition on silica surfaces of twoPseudomonas fluorescensstrains (CHA0 and CHA19-WS) having different extracellular polymeric substance (EPS) producing capacities was studied in the absence and presence of cellulose nanocrystals (CNCs).


Author(s):  
Catherine J. Crowley ◽  
Kristin Guest ◽  
Kenay Sudler

What does it mean to have true cultural competence as an speech-language pathologist (SLP)? In some areas of practice it may be enough to develop a perspective that values the expectations and identity of our clients and see them as partners in the therapeutic process. But when clinicians are asked to distinguish a language difference from a language disorder, cultural sensitivity is not enough. Rather, in these cases, cultural competence requires knowledge and skills in gathering data about a student's cultural and linguistic background and analyzing the student's language samples from that perspective. This article describes one American Speech-Language-Hearing Association (ASHA)-accredited graduate program in speech-language pathology and its approach to putting students on the path to becoming culturally competent SLPs, including challenges faced along the way. At Teachers College, Columbia University (TC) the program infuses knowledge of bilingualism and multiculturalism throughout the curriculum and offers bilingual students the opportunity to receive New York State certification as bilingual clinicians. Graduate students must demonstrate a deep understanding of the grammar of Standard American English and other varieties of English particularly those spoken in and around New York City. Two recent graduates of this graduate program contribute their perspectives on continuing to develop cultural competence while working with diverse students in New York City public schools.


Sign in / Sign up

Export Citation Format

Share Document