scholarly journals Rotational Studies of Lower Main Sequence Stars

1980 ◽  
Vol 5 ◽  
pp. 827-830
Author(s):  
Myron A. Smith

This review summarizes the techniques and limitations involved in determining small rotational velocities in late-type stars. Recent results from photoelectric line profiles of field main sequence G stars will also be presented.Historically three techniques have been used to measure stellar rotational velocities: (1.) calibration of a “clean” line width in terms of computed profile models, (2.) use of the Fourier transform frequency domain (dissection of rotation and turbulent velocity fields from the thermal profile), and (3.) monitoring of the rotational modulation of a chromospherically active or spotted star. The results discussed below concern technique (2.). Technique (3.) has not been exploited much yet but holds considerable promise for the future, in particular for the measurement of ultra-slow rotation.

2004 ◽  
Vol 215 ◽  
pp. 93-94
Author(s):  
C. Neiner ◽  
S. Jankov ◽  
M. Floquet ◽  
A. M. Hubert

v sin i was determined by applying the Fourier transform method to the line profiles of two classical Be Stars. A variation is observed in the apparent v sin i which corresponds to the main frequencies associated to nrp modes. Rotational modulation is observed in wind sensitive UV lines of the Be star ω Ori and is associated with an oblique magnetic dipole which is discovered for the first time in a classical Be star.


1983 ◽  
Vol 5 (2) ◽  
pp. 152-157 ◽  
Author(s):  
L. E. Cram

Two recent observational surveys of the Ca II resonance lines (Zarro and Rodgers 1983; Linsky et al. 1979) illustrate the great diversity of line profile shapes found in the spectra of cool stars. This diversity reflects a corresponding wide range in the underlying chromospheric properties of the stars. There are, however, three well-marked systematic trends in the shapes of Ca II line profiles which presumably reflect systematic trends in chromospheric properties. One of these, the Wilson-Bappu effect (Wilson and Bappu 1957), describes the strong correlation betweeen the width of the emission core (see Figure 1) and the absolute visual magnitude of the star. Despite much work, it is still not clear whether this is due primarily to systematic changes of velocity fields (e.g. Hoyle and Wilson 1958) or optical depths (e.g. Jefferies and Thomas 1959) in stellar chromospheres.


1979 ◽  
Vol 47 ◽  
pp. 239-246
Author(s):  
J. R. Mould

AbstractThe need for establishing classification criteria at long wavelengths is stressed. The usefulness of doing this is illustrated with a discussion of the composite spectra of FU Orionis stars. Spectra of these pre-main-sequence stars from 1.5-2.5μ were obtained with a Fourier Transform Spectrometer. Luminosity criteria in the l-2μ range are also discussed with application to M stars.


1959 ◽  
Vol 10 ◽  
pp. 39-40
Author(s):  
O. C. Wilson

Modern photoelectric techniques yield magnitudes and colors of stars with accuracies of the order of a few thousandths and a few hundredths of a magnitude respectively. Hence for star clusters it is possible to derive highly accurate color-magnitude arrays since all of the members of a cluster may be considered to be at the same distance from the observer. It is much more difficult to do this for the nearby stars where all of the objects concerned are at different, and often poorly determined, distances. If one depends upon trigonometric parallaxes, the bulk of the reliable individual values will refer to main sequence stars, and while the mean luminosities of brighter stars are given reasonably well by this method, the scatter introduced into a color-magnitude array by using individual trigonometrically determined luminosities could obscure important features. Somewhat similar objections could be raised against the use of the usual spectroscopic parallaxes which also should be quite good for the main sequence but undoubtedly exhibit appreciable scatter for some, at least, of the brighter stars.


2019 ◽  
Vol 628 ◽  
pp. A41 ◽  
Author(s):  
D. Pizzocaro ◽  
B. Stelzer ◽  
E. Poretti ◽  
S. Raetz ◽  
G. Micela ◽  
...  

The relation between magnetic activity and rotation in late-type stars provides fundamental information on stellar dynamos and angular momentum evolution. Rotation-activity studies found in the literature suffer from inhomogeneity in the measurement of activity indexes and rotation periods. We overcome this limitation with a study of the X-ray emitting, late-type main-sequence stars observed by XMM-Newton and Kepler. We measured rotation periods from photometric variability in Kepler light curves. As activity indicators, we adopted the X-ray luminosity, the number frequency of white-light flares, the amplitude of the rotational photometric modulation, and the standard deviation in the Kepler light curves. The search for X-ray flares in the light curves provided by the EXTraS (Exploring the X-ray Transient and variable Sky) FP-7 project allows us to identify simultaneous X-ray and white-light flares. A careful selection of the X-ray sources in the Kepler field yields 102 main-sequence stars with spectral types from A to M. We find rotation periods for 74 X-ray emitting main-sequence stars, 20 of which do not have period reported in the previous literature. In the X-ray activity-rotation relation, we see evidence for the traditional distinction of a saturated and a correlated part, the latter presenting a continuous decrease in activity towards slower rotators. For the optical activity indicators the transition is abrupt and located at a period of ~10 d but it can be probed only marginally with this sample, which is biased towards fast rotators due to the X-ray selection. We observe seven bona-fide X-ray flares with evidence for a white-light counterpart in simultaneous Kepler data. We derive an X-ray flare frequency of ~0.15 d−1, consistent with the optical flare frequency obtained from the much longer Kepler time-series.


1995 ◽  
Vol 110 ◽  
pp. 2415 ◽  
Author(s):  
B. Ali ◽  
John S. Carr ◽  
D. L. Depoy ◽  
Jay A. Frogel ◽  
K. Sellgren

Author(s):  
F. Koller ◽  
M. Leitzinger ◽  
M. Temmer ◽  
P. Odert ◽  
P. G. Beck ◽  
...  

2018 ◽  
Vol 618 ◽  
pp. A86 ◽  
Author(s):  
D. Schneider ◽  
A. Irrgang ◽  
U. Heber ◽  
M. F. Nieva ◽  
N. Przybilla

Several B-type main-sequence stars show chemical peculiarities. A particularly striking class are the 3He stars, which exhibit a remarkable enrichment of 3He with respect to 4He. This isotopic anomaly has also been found in blue horizontal branch (BHB) and subdwarf B (sdB) stars, which are helium-core burning stars of the extreme horizontal branch. Recent surveys uncovered 11 3He sdBs. The 3He anomaly is not due to thermonuclear processes, but caused by atomic diffusion in the stellar atmosphere. Using a hybrid local/non-local thermodynamic equilibrium (LTE/NLTE) approach for B-type stars, we analyzed high-quality spectra of two known 3He BHBs and nine known 3He sdBs to determine their isotopic helium abundances and 4He/3He abundance ratios. We redetermined their atmospheric parameters and analyzed selected He I lines, including λ4922 Å and λ6678 Å, which are very sensitive to 4He/3He. Most of the 3He sdBs cluster in a narrow temperature strip between 26000 K and 30000 K and are helium deficient in accordance with previous LTE analyses. BD+48° 2721 is reclassified as a BHB star because of its low temperature (Teff = 20700 K). Whereas 4He is almost absent (4He/3He < 0.25) in most of the known 3He stars, other sample stars show abundance ratios up to 4He/3He ∼2.51. A search for 3He stars among 26 candidate sdBs from the ESO SPY survey led to the discovery of two new 3He sdB stars (HE 0929–0424 and HE 1047–0436). The observed helium line profiles of all BHBs and of three sdBs are not matched by chemically homogeneous atmospheres, but hint at vertical helium stratification. This phenomenon has been seen in other peculiar B-type stars, but is found for the first time for sdBs. We estimate helium to increase from the outer to the inner atmosphere by factors ranging from 1.4 (SB 290) up to 8.0 (BD+48° 2721).


Sign in / Sign up

Export Citation Format

Share Document