scholarly journals Formation of Young Star Clusters

2005 ◽  
Vol 13 ◽  
pp. 358-362
Author(s):  
Bruce Elmegreen

AbstractTurbulence, self-gravity, and cooling convert most of the interstellar medium into cloudy structures that form stars. Turbulence compresses the gas into clouds directly and it moves pre-existing clouds around passively when there are multiple phases of temperature. Self-gravity also partitions the gas into clouds, forming giant regular complexes in spiral arms and in resonance rings and contributing to the scale-free motions generated by turbulence. Dense clusters form in the most strongly self-gravitating cores of these clouds, often triggered by compression from local stars. Pre-star formation processes inside clusters are not well observed, but the high formation rates and high densities of pre-stellar objects, and their power law mass functions suggest that turbulence, self-gravity, and energy dissipation are involved there too.

1991 ◽  
Vol 148 ◽  
pp. 207-208
Author(s):  
Myung Gyoon Lee

Using U BV CCD photometry, the stellar content of HII regions and young star clusters in the Magellanic Clouds has been studied: (1) the reddenings have been determined, and ages of OB associations and young star clusters have been measured; (2) the stellar initial mass functions have been determined by using the main-sequence luminosity functions; and (3) U BV CCD surface photometry of nine young star clusters has been obtained and their structural properties investigated.


2019 ◽  
Vol 15 (S352) ◽  
pp. 350-352
Author(s):  
Kathryn Grasha ◽  
Daniela Calzetti

AbstractStar formation provides insight into the physical processes that govern the transformation of gas into stars. A key missing piece in a predictive theory of star formation is the link between scales of individual stars and star clusters up to entire galaxies. LEGUS is now providing the information to test the overall organization and spatial evolution of star formation. We present our latest findings of using star clusters from LEGUS combined with ALMA CO observations to investigate the transition from molecular gas to star formation in local galaxies. This work paves the way for future JWST observations of the embedded phase of star formation, the last missing ingredient to connect young star clusters and their relation with gas reservoirs. Multi-wavelength studies of local galaxies and their stellar and gas components will help shed light on early phases of galaxy evolution and properties of the ISM at high-z.


2019 ◽  
Vol 872 (1) ◽  
pp. 93 ◽  
Author(s):  
Angus Mok ◽  
Rupali Chandar ◽  
S. Michael Fall

2020 ◽  
Vol 499 (2) ◽  
pp. 2028-2041
Author(s):  
S M Benincasa ◽  
J W Wadsley ◽  
H M P Couchman ◽  
A R Pettitt ◽  
B W Keller ◽  
...  

ABSTRACT Far-ultraviolet (FUV) radiation greatly exceeds UV, supernovae (SNe), and winds in the energy budget of young star clusters but is poorly modelled in galaxy simulations. We present results of the first isolated galaxy disc simulations to include photoelectric heating of gas via dust grains from FUV radiation self-consistently, using a ray-tracing approach that calculates optical depths along the source–receiver sightline. This is the first science application of the TREVR radiative transfer algorithm. We find that FUV radiation alone cannot regulate star formation. However, FUV radiation produces warm neutral gas and is able to produce regulated galaxies with realistic scale heights. FUV is also a long-range feedback and is more important in the outer discs of galaxies. We also use the superbubble feedback model, which depends only on the SN energy per stellar mass, is more physically realistic than common, parameter-driven alternatives and thus better constrains SN feedback impacts. FUV and SNe together can regulate star formation without producing too much hot ionized medium and with less disruption to the interstellar medium compared to SNe alone.


1986 ◽  
Vol 7 ◽  
pp. 489-499
Author(s):  
Hans Zinnecker

AbstractThis review discusses both the earlier and the most recent work on the IMF in young star clusters. It is argued that the study of the stellar content of young star clusters offers the best chance of developing a theory of star formation and of the IMF.


2013 ◽  
Vol 9 (S303) ◽  
pp. 43-53 ◽  
Author(s):  
Woong-Tae Kim ◽  
Woo-Young Seo ◽  
Yonghwi Kim

AbstractBarred galaxies contain substructures such as a pair of dust lanes and nuclear rings, with the latter being sites of intense star formation. We study the substructure formation as well as star formation in nuclear rings using numerical simulations. We find that nuclear rings form not by the Lindblad resonances, as previously thought, but by the centrifugal barrier that inflowing gas along dust lanes cannot overcome. This predicts a smaller ring in a more strongly barred galaxy, consistent with observations. Star formation rate (SFR) in a nuclear ring is determined primarily by the mass inflow rate to the ring. In our models, the SFR typically shows a short strong burst associated with the rapid gas infall and stays very small for the rest of the evolution. When the SFR is low, ages of young star clusters exhibit an azimuthal gradient along the ring since star formation takes place mostly near the contact points between the dust lanes and the nuclear ring. When the SFR is large, on the other hand, star formation is widely distributed throughout the whole length of the ring, with no apparent age gradient of star clusters. Since observed ring star formation appears long-lived with episodic bursts, our results suggest that the bar region should be replenished continually with fresh gas from outside.


Sign in / Sign up

Export Citation Format

Share Document