scholarly journals GAS SURFACE DENSITY, STAR FORMATION RATE SURFACE DENSITY, AND THE MAXIMUM MASS OF YOUNG STAR CLUSTERS IN A DISK GALAXY. II. THE GRAND-DESIGN GALAXY M51

2013 ◽  
Vol 770 (2) ◽  
pp. 85 ◽  
Author(s):  
Rosa A. González-Lópezlira ◽  
Jan Pflamm-Altenburg ◽  
Pavel Kroupa
2013 ◽  
Vol 9 (S303) ◽  
pp. 43-53 ◽  
Author(s):  
Woong-Tae Kim ◽  
Woo-Young Seo ◽  
Yonghwi Kim

AbstractBarred galaxies contain substructures such as a pair of dust lanes and nuclear rings, with the latter being sites of intense star formation. We study the substructure formation as well as star formation in nuclear rings using numerical simulations. We find that nuclear rings form not by the Lindblad resonances, as previously thought, but by the centrifugal barrier that inflowing gas along dust lanes cannot overcome. This predicts a smaller ring in a more strongly barred galaxy, consistent with observations. Star formation rate (SFR) in a nuclear ring is determined primarily by the mass inflow rate to the ring. In our models, the SFR typically shows a short strong burst associated with the rapid gas infall and stays very small for the rest of the evolution. When the SFR is low, ages of young star clusters exhibit an azimuthal gradient along the ring since star formation takes place mostly near the contact points between the dust lanes and the nuclear ring. When the SFR is large, on the other hand, star formation is widely distributed throughout the whole length of the ring, with no apparent age gradient of star clusters. Since observed ring star formation appears long-lived with episodic bursts, our results suggest that the bar region should be replenished continually with fresh gas from outside.


2020 ◽  
Vol 500 (3) ◽  
pp. 3123-3141
Author(s):  
Swagat R Das ◽  
Jessy Jose ◽  
Manash R Samal ◽  
Shaobo Zhang ◽  
Neelam Panwar

ABSTRACT The processes that regulate star formation within molecular clouds are still not well understood. Various star formation scaling relations have been proposed as an explanation, one of which is to formulate a relation between the star formation rate surface density $\rm \Sigma _{SFR}$ and the underlying gas surface density $\rm \Sigma _{gas}$. In this work, we test various star formation scaling relations, such as the Kennicutt–Schmidt relation, the volumetric star formation relation, the orbital time model, the crossing time model and the multi free-fall time-scale model, towards the North American Nebula and Pelican Nebula and in the cold clumps associated with them. Measuring stellar mass from young stellar objects and gaseous mass from CO measurements, we estimate the mean $\rm \Sigma _{SFR}$, the star formation rate per free-fall time and the star formation efficiency for clumps to be 1.5 $\rm M_{\odot}\, yr^{-1}\, kpc^{-2}$, 0.009 and 2.0 per cent, respectively, while for the whole region covered by both nebulae (which we call the ‘NAN’ complex) the values are 0.6 $\rm M_{\odot}\, yr^{-1}\, kpc^{-2}$, 0.0003 and 1.6 per cent, respectively. For the clumps, we notice that the observed properties are in line with the correlation obtained between $\rm \Sigma _{SFR}$ and $\rm \Sigma _{gas}$, and between $\rm \Sigma _{SFR}$ and $\rm \Sigma _{gas}$ per free-fall time and orbital time for Galactic clouds. At the same time, we do not observe any correlation with $\rm \Sigma _{gas}$ per crossing time and multi free-fall time. Even though we see correlations in the former cases, however, all models agree with each other within a factor of 0.5 dex. It is not possible to discriminate between these models because of the current uncertainties in the input observables. We also test the variation of $\rm \Sigma _{SFR}$ with the dense gas but, because of low statistics, a weak correlation is seen in our analysis.


2018 ◽  
Vol 611 ◽  
pp. A72 ◽  
Author(s):  
Marita Krause ◽  
Judith Irwin ◽  
Theresa Wiegert ◽  
Arpad Miskolczi ◽  
Ancor Damas-Segovia ◽  
...  

Aim. The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution.Methods. We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands.Results. The sample average values for the radio scale heights of the halo are 1.1 ± 0.3 kpc in C-band and 1.4 ± 0.7 kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height h˜ which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, h˜ shows a tight anticorrelation with the mass surface density.Conclusions. The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we found for the first time observational evidence of a gravitational deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.


2019 ◽  
Vol 491 (2) ◽  
pp. 2088-2103 ◽  
Author(s):  
Rahul Kannan ◽  
Federico Marinacci ◽  
Christine M Simpson ◽  
Simon C O Glover ◽  
Lars Hernquist

ABSTRACT We present a suite of high-resolution radiation hydrodynamic simulations of a small patch (1 kpc2) of the interstellar medium (ISM) performed with arepo-rt, with the aim to quantify the efficacy of various feedback processes like supernova (SN) explosions, photoheating, and radiation pressure in low gas surface density galaxies (Σgas ≃ 10 M⊙ pc−2). We show that radiative feedback decrease the star formation rate and therefore the total stellar mass formed by a factor of approximately two. This increases the gas depletion time-scale and brings the simulated Kennicutt–Schmidt relation closer to the observational estimates. Radiation feedback coupled with SN is more efficient at driving outflows with the mass and energy loading increasing by a factor of ∼10. This increase is mainly driven by the additional entrainment of medium-density (10−2  cm−3 ≤ n < 1 cm−3) warm (300 K ≤ T < 8000 K) material. Therefore, including radiative feedback tends to launch colder, denser, and more mass- and energy-loaded outflows. This is because photoheating of the high-density gas around a newly formed star overpressurizes the region, causing it to expand. This reduces the ambient density in which the SN explode by a factor of 10–100 which in turn increases their momentum output by a factor of ∼1.5–2.5. Finally, we note that in these low gas surface density environments, radiative feedback primarily impact the ISM via photoheating and radiation pressure has only a minimal role in regulating star formation.


2015 ◽  
Vol 11 (S319) ◽  
pp. 129-129
Author(s):  
Xiaoyu Kang ◽  
Fenghui Zhang ◽  
Ruixiang Chang

AbstractA simple model for M51a is constructed to explore its evolutionary history by assuming its disk grows from continuous gas infall, which is shaped by a free parameter-the infall-peak time tp. By adopting a constant infall-peak time tp = 7.0Gyr, our model predictions can reproduce most of the observed constraints and still show that the disk of M51a forms inside-out. Our results also show that the current molecular gas surface density, the star-formation rate and the UV-band surface brightness are important quantities to trace the effect of recent interactions on galactic star-formation process.


2019 ◽  
Vol 15 (S352) ◽  
pp. 350-352
Author(s):  
Kathryn Grasha ◽  
Daniela Calzetti

AbstractStar formation provides insight into the physical processes that govern the transformation of gas into stars. A key missing piece in a predictive theory of star formation is the link between scales of individual stars and star clusters up to entire galaxies. LEGUS is now providing the information to test the overall organization and spatial evolution of star formation. We present our latest findings of using star clusters from LEGUS combined with ALMA CO observations to investigate the transition from molecular gas to star formation in local galaxies. This work paves the way for future JWST observations of the embedded phase of star formation, the last missing ingredient to connect young star clusters and their relation with gas reservoirs. Multi-wavelength studies of local galaxies and their stellar and gas components will help shed light on early phases of galaxy evolution and properties of the ISM at high-z.


2005 ◽  
Vol 13 ◽  
pp. 358-362
Author(s):  
Bruce Elmegreen

AbstractTurbulence, self-gravity, and cooling convert most of the interstellar medium into cloudy structures that form stars. Turbulence compresses the gas into clouds directly and it moves pre-existing clouds around passively when there are multiple phases of temperature. Self-gravity also partitions the gas into clouds, forming giant regular complexes in spiral arms and in resonance rings and contributing to the scale-free motions generated by turbulence. Dense clusters form in the most strongly self-gravitating cores of these clouds, often triggered by compression from local stars. Pre-star formation processes inside clusters are not well observed, but the high formation rates and high densities of pre-stellar objects, and their power law mass functions suggest that turbulence, self-gravity, and energy dissipation are involved there too.


1986 ◽  
Vol 116 ◽  
pp. 101-102
Author(s):  
M. Kontizas ◽  
E. Kontizas

Photometric and recent spectroscopic studies of the SMC have shown that the differences observed in the SMC clusters and those of our Galaxy could be attibuted to differences in metallicity, star formation rate and/or the Initial Mass Function (IMF) (Humphries, 1983). The studied clusters NGC152 and KRON3 are located at the west side of the bar of the SMC and their adjoining fields represent the halo population of this galaxy.


Sign in / Sign up

Export Citation Format

Share Document