scholarly journals Absolute Proper Motions of Bulge Giants in the Hipparcos System

1998 ◽  
Vol 11 (1) ◽  
pp. 572-572
Author(s):  
D. Minniti ◽  
M.G. Lattanzi ◽  
J.J. Claria ◽  
G. Massone ◽  
R. Casalegno

Three windows towards the Galactic bulge, located at (l, b) = (1.6,-2.8), (5.2,-3.5), and (4.2,-4.8), were identified from deep astrometric plates. Deep BVRI CCD photometry of these fields reaching V = 18.5 was obtained at the ESO Dutch telescope. The color-color and color magnitude diagrams of these fields allow us to select different bulge tracers, including blue horizontal branch stars, red clump giants, and RGB tip stars, as well as disk main-sequence stars. A first catalogue of some 2000 red clump giants was constructed, and measurement of their proper motions in under way. We are deriving absolute proper motions in the Hipparcos system using a two step procedure. First, plates from the Cordoba archive of the Astrographic Catalogue (epochs 1903-1913) are used in combination with recent plates from theESO GPO telescope to tie a set of intermediate magnitude field stars in the Hipparcos system of positions and proper motions. Second, deeper intermediate epoch (1958) and final epoch CCD images (epoch 1996.5) are used to determine the absolute proper motions of the fainter bulge stars. The average uncertainty in the absolute proper motion of a single giant, based on a preliminary sample of few tens of stars, is 0”.006 yr-1. This relatively small error, in combination with the sample size, would allow usto study the shape of the velocity ellipsoid for the different Galactic components present in the inner regions as function of Galactocentric distance, and also to measure an accurate distance to the Galactic center and the mass of the bulge. In addition, we identified about 20 faint objects which are potential members of the Sgr dwarf, based on their location in the color-magnitude diagrams, and are also measuring their proper motions. Other windows with measured proper motions are located along the Galactic minor axis, including Baade’s window at l, b = (1, −4) (Spaenhauer, A., Jones, B. F., &: Whitford, A. E., 1992, A3, 103, 297), and the Plaut field at l, b = (0, - 8 ) (Mendez, R. et al., 1997, in 4th ESO/CTIO Workshop on “The Galactic Center”, in press). Our proper motions are complementary, probing the kinematics off the Galactic minor axis, where the signature of rotation should be evident. The fields chosen for this study overlap fields that the MACHO project is following since 1993. Their variable star database would provide with excellent tracers of different populations. The 3-D motions of these different Galactic components would be measured for the first time. These include RR Lyrae tracers of the inner metal-poor halo, Miras, LPVs and delta Scuti stars tracers of the metal-rich bulge, and eclipsing binaries tracers of the Galactic disk (Minniti, D., et al., 1996, in IAP Coll. on “Variable Stars and the Astrophysical Returns of Microlensing Surveys”, ed. R. Ferlet, p. 257; Alcock, C, et al., 1997, astro-ph/9707311).

2009 ◽  
Vol 5 (S266) ◽  
pp. 482-482
Author(s):  
Xiaoying Pang ◽  
Chenggang Shu

AbstractThe WEBDA database of open clusters (hereafter OCs) in the Galaxy contains 970 OCs, of which 911 have age determinations, 920 have distance measurements, and 911 have color-excess data. Base on the statistical analysis of global properties of open clusters, we investigate disk properties such as the height above the Galactic plane. We find that old open clusters (age ≥ 1 Gyr) are preferentially located far from the Galactic plane with 〈|z|〉~394.5 pc. They lie in the outer part of the Galactic disk. The young open clusters are distributed in the Galactic plane almost symmetrically with respect to the Sun, with a scale height perpendicular to the Galactic plane of 50.5 pc. The age distribution of open clusters can be fit approximately with a two-component exponential decay function: one component has an age scale factor of 225.2 Myr, and the other consists of longer-lived clusters with an age scale of 1.8 Gyr, which are smaller than those derived by Janes & Phelps (1994) of 200 Myr and 4 Gyr for the young and old OCs, respectively. As a consequence of completeness effects, the observed radial distribution of OCs with respect to Galactocentric distance does not follow the expected exponential profile. Instead, it falls off both for regions external to the solar circle and more sharply towards the Galactic Center, which is probably due to giant molecular cloud disruption in the center. We simulate the effects of completeness, assuming that the observed distribution of the number of OCs with a given number of stars above the background is representative of the intrinsic distribution of OCs throughout the Galaxy. Two simulation models are considered, in which the intrinsic number of the observable stars are distributed (i) assuming the actual positions of the OCs in the sample, and (ii) random selection of OC positions. As a result, we derive completeness-corrected radial distributions which agree with an exponential disk throughout the observed Galactocentric distance in the range of 5–15 kpc, with scale lengths in the range of 1.6–2.8 kpc.


1995 ◽  
Vol 148 ◽  
pp. 276-279
Author(s):  
Francisco J. Fuenmayor

AbstractA determination of the C/M5+ ratio, as a function of the galactocentric distance, in the galactic disk is presented. These results are based upon previous determinations of the space density for cool carbon stars and for late giant M stars in the Milky Way. Most of these results were obtained from objective-prism surveys in the near infrared using mainly Schmidt-type telescopes. The ratio C/M5+ appears to increase from 0.05 to 0.25 in the galactic disk, from the galactic center outwards. A mean value of 0.15 of this ratio for the Galaxy is suggested. Correlations between the C/M5+ ratio and currently known metal abundance gradients in the galactic disk are discussed.


2006 ◽  
Vol 2 (14) ◽  
pp. 198-198
Author(s):  
Alceste Z. Bonanos

Masses, radii and luminosities of distant stars can only be measured accurately in eclipsing binaries. The most massive eclipsing binary currently known is WR 20a, which consists of two ~ 80 M⊙ stars in a 3.7 d orbit. Analogs of WR 20a are bound to exist both in massive stellar clusters in our Galaxy and in nearby galaxies. The nearest ones are located in the clusters near the Galactic Center: the Center, Arches, and Quintuplet clusters. The severe amount of reddening in the galactic disk makes the study of galactic clusters challenging. However, with current 8-m class telescopes, the study of massive stars in nearby galaxies is also feasible. The nearest Local Group galaxies (LMC, SMC, M 31, M 33) provide the perfect laboratory for studying massive stars and determining their properties as a function of metallicity. Such studies will constrain models, confirm the dependence of evolution on metallicity and help understand the rate and nature of supernovae and gamma-ray bursts.


2018 ◽  
Vol 620 ◽  
pp. A48 ◽  
Author(s):  
A. Irrgang ◽  
S. Kreuzer ◽  
U. Heber

Context. Young massive stars in the halo are assumed to be runaway stars from the Galactic disk. Possible ejection scenarios are binary supernova ejections (BSE) or dynamical ejections from star clusters (DE). Hypervelocity stars (HVSs) are extreme runaway stars that are potentially unbound from the Galaxy. Powerful acceleration mechanisms such as the tidal disruption of a binary system by a supermassive black hole (SMBH) are required to produce them. Therefore, HVSs are believed to originate in the Galactic center (GC), the only place known to host an SMBH. Aims. The second Gaia data release (DR2) offers the opportunity of studying HVSs in an unprecedented manner. We revisit some of the most interesting high-velocity stars, that is, 15 stars (11 candidate HVSs and 4 radial velocity outliers) for which proper motions with the Hubble Space Telescope. were obtained in the pre-Gaia era, to unravel their origin. Methods. By carrying out kinematic analyses based on revised spectrophotometric distances and proper motions from Gaia DR2, kinematic properties were obtained that help constrain the spatial origins of these stars. Results. Stars that were previously considered (un)bound remain (un)bound in Galactic potentials favored by Gaia DR2 astrometry. For nine stars (five candidate HVSs plus all four radial velocity outliers), the GC can be ruled out as spatial origin at least at 2σ confidence level, suggesting that a large portion of the known HVSs are disk runaway stars launched close to or beyond Galactic escape velocities. The fastest star in the sample, HVS 3, is confirmed to originate in the Large Magellanic Cloud. Conclusions. Because the ejection velocities of five of our non-GC stars are close to or above the upper limits predicted for BSE and DE, another powerful dynamical ejection mechanism (e.g., involving massive perturbers such as intermediate-mass black holes) is likely to operate in addition to the three classical scenarios mentioned above.


2018 ◽  
Vol 610 ◽  
pp. A10 ◽  
Author(s):  
J. F. Corby ◽  
B. A. McGuire ◽  
E. Herbst ◽  
A. J. Remijan

The 1–50 GHz PRebiotic Interstellar MOlecular Survey (PRIMOS) contains ~50 molecular absorption lines observed in clouds located in the line-of-sight to Sgr B2(N). The line-of-sight material is associated with diffuse and translucent clouds located in the Galactic center, bar, and spiral arms in the disk. We measured the column densities and estimate abundances, relative to H2, of 11 molecules and additional isotopologues observed in this material. We used absorption by optically thin transitions of c-C3H2 to estimate the molecular hydrogen columns, and argue that this method is preferable to more commonly used methods. We discuss the kinematic structure and abundance patterns of small molecules including the sulfur-bearing species CS, SO, CCS, H2CS, and HCS+; oxygen-bearing molecules OH, SiO, and H2CO; and simple hydrocarbon molecules c-C3H2, l-C3H, and l-C3H+. Finally, we discuss the implications of the observed chemistry for the structure of the gas and dust in the ISM. Highlighted results include the following. First, whereas gas in the disk has a molecular hydrogen fraction of 0.65, clouds on the outer edge of the Galactic bar and in or near the Galactic center have molecular fractions of 0.85 and >0.9, respectively. Second, we observe trends in isotope ratios with Galactocentric distance; while carbon and silicon show enhancement of the rare isotopes at low Galactocentric distances, sulfur exhibits no trend with Galactocentric distance. We also determine that the ratio of c-C3H2/c-H13CCCH provides a good estimate of the 12C/13C ratio, whereas H2CO/H213CO exhibits fractionation. Third, we report the presence of l-C3H+ in diffuse clouds for the first time. Finally, we suggest that CS has an enhanced abundance within higher density clumps of material in the disk, and therefore may be diagnostic of cloud conditions. If this holds, the diffuse clouds in the Galactic disk contain multiple embedded hyperdensities in a clumpy structure, and the density profile is not a simple function of AV.


2012 ◽  
Vol 8 (S289) ◽  
pp. 444-447 ◽  
Author(s):  
Zi Zhu ◽  
Ming Shen

AbstractBased on radial velocity data and Hipparcos proper motions, we present a new determination of the Galactocentric distance based on a purely kinematic model. We have selected three subgroups of Galactic thin-disk components (O–B5 stars, classical Cepheids and Galactic open clusters) to trace the local structure and kinematics of the Galactic disk. Adopting the approximation of axisymmetric circular rotation, we have derived the Sun's distance to the Galactic Center, R0 = 8.25 ± 0.79 kpc based on O–B5 stars, R0 = 7.98 ± 0.79 kpc based on Galactic Cepheids and R0 = 8.03 ± 0.70 kpc using open clusters, all of which are in excellent agreement with the current-best estimate of the Galactocentric distance.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012011
Author(s):  
D Sakai ◽  
T Oyama ◽  
T Nagayama ◽  
H Kobayashi ◽  
M Honma

Abstract The Central Molecular Zone (CMZ) in the Galactic Center region shows outstanding non-circular motion unlike the Galactic disk. Although several models describing this non-circular motion are proposed, an uniform kinematic model of the CMZ orbit is not appeared. Three dimensional velocity information including proper motions will be critical to constrain the orbital models of the CMZ because most of models proposed are devised to reproduce the line-of-sight velocity pro les of the molecular clouds in this region. To reveal the dynamics of the Galactic center region, we conducted VLBI astrometric observations of 22 GHz water maser sources toward the Galactic center with VERA. By measuring parallaxes and proper motions, we can identify whether each source is actually located in the CMZ or not, and identify the three dimensional positions and velocities in the non-circular orbit if the source is located in the CMZ. We show the results of astrometric study for several maser sources associated with molecular clouds toward the Galactic center including Sgr B2 complex and Sgr D HII region. The parallax measurement toward Sgr B2 obtained the parallax of 0.133 0:038 mas, and its proper motions indicated that Sgr B2 complex is moving toward the positive Galactic longitude with V = 100 km s−1 relative to Sgr A*.


Sign in / Sign up

Export Citation Format

Share Document