Heat Transfer of Confined Circular Jet Impingement

2001 ◽  
Vol 17 (1) ◽  
pp. 29-38
Author(s):  
Shou-Shing Hsieh ◽  
Jung-Tai Huang ◽  
Huang-Hsiu Tsai

ABSTRACTExperiments for heat transfer characteristics of confined circular single jet impingement were conducted. The effect of jet Reynolds number, jet hole-to-plate spacing and heat flux levels on heat transfer characteristics of the heated target surface was examined and presented. The local heat transfer coefficient along the surface is measured and correlations of the stagnation point, local and average Nusselt number are developed and discussed. Finally, comparisons of the present data with existing results were also made.

Author(s):  
Shou-Shing Hsieh ◽  
Jung-Tai Huang

An experimental study was performed in a confined circular single jet impingement. The effect of jet Reynolds number, nozzle-to-plate spacing and heat flux levels on heat transfer characteristics of the heated target surface was examined and presented. Flow visualization was made to broaden our fundamental understanding of the physical process of the type of flow. Transition and turbulent regimes are identified. The local heat transfer coefficient along the surface is measured and correlation of the stagnation point Nusselt number are presented and discussed.


Author(s):  
Xing Yang ◽  
Zhao Liu ◽  
Zhenping Feng

Detailed heat transfer distributions are numerically investigated on a multiple jet impingement target surface with staggered arrays of spherical dimples where coolant can be extracted through film holes for external film cooling. The three dimensional Reynolds-averaged Navier-Stokes analysis with SST k-ω turbulence model is conducted at jet Reynolds number from 15,000 to 35,000. The separation distance between the jet plate and the target surface varies from 3 to 5 jet diameters and two jet-induced crossflow schemes are included to be referred as large and small crossflow at one and two opposite exit openings correspondingly. Flow and heat transfer results for the dimpled target plate with three suction ratios of 2.5%, 5.0% and 12.0% are compared with those on dimpled surfaces without film holes. The results indicate the presence of film holes could alter the local heat transfer distributions, especially near the channel outlets where the crossflow level is the highest. The heat transfer enhancements by applying film holes to the dimpled surfaces is improved to different degrees at various suction ratios, and the enhancements depend on the coupling effect of impingement and channel flow, which is relevant to jet Reynolds number, jet-to-plate spacing and crossflow scheme.


Author(s):  
Xinjun Wang ◽  
Rui Liu ◽  
Xiaowei Bai ◽  
Jinling Yao

A mathematical model used for studying jet impingement cooling characteristics is established, and the rationality of the calculation model and method is confirmed by the experimental data. The CFX software is used to numerically simulate the jet impingement cooling characteristics on a gas turbine blade. The effects of various parameters, such as the arrays of impinging nozzles, the jet Reynolds number, the jet-to-jet distance, the ratio of nozzle-to-surface spacing to jet diameter H/d, and the radius of curvature of the target surface, on the flow and heat transfer characteristics of a impingement cooling process are studied. The results indicate that the impingement jets can make complex vortex in the cooling channel, the flow boundary layer is extremely thin and highly turbulent. Underneath each impingement nozzle, there will appear a low temperature area and a peak of Nusselt number on the impingement target surface, the distribution of temperature and Nusselt number on the target surface are associated with arrangement of impingement nozzles. The average Nusselt number of the in-line arrangement nozzles is higher than that of the staggered arrangement ones. With the increasing of jet Reynolds number, the velocity impinging on the target surface and Nusselt number increase. However, heat transfer of impingement cooling on target surface is not sensitive to the jet nozzles distance; the velocity impinging on the target surface and Nusselt number decrease with the increasing of the H/d value. For the curved target surface cases, the average Nusselt number of the target surface and the effect of heat transfer decreased with the increasing of curvature radius R.


2018 ◽  
Vol 58 (1) ◽  
pp. 132-139 ◽  
Author(s):  
Bingxing Wang ◽  
Dong Lin ◽  
Bo Zhang ◽  
Lei Xiong ◽  
Zhaodong Wang ◽  
...  

Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 44
Author(s):  
Xing Yang ◽  
Hang Wu ◽  
Zhenping Feng

In this paper, detailed flow patterns and heat transfer characteristics of a jet impingement system with extended jet holes are experimentally and numerically studied. The jet holes in the jet plate present an inline array of 16 × 5 rows in the streamwise (i.e., the crossflow direction) and spanwise directions, where the streamwise and spanwise distances between adjacent holes, which are normalized by the jet hole diameter (xn/d and yn/d), are 8 and 5, respectively. The jets impinge onto a smooth target plate with a normalized distance (zn/d) of 3.5 apart from the jet plate. The jet holes are extended by inserting stainless tubes throughout the jet holes and the extended lengths are varied in a range of 1.0d–2.5d, depending on the jet position in the streamwise direction. The experimental data is obtained by using the transient thermochromic liquid crystal (TLC) technique for wide operating jet Reynolds numbers of (1.0 × 104)–(3.0 × 104). The numerical simulations are well-validated using the experimental data and provide further insight into the flow physics within the jet impingement system. Comparisons with a traditional baseline jet impingement scheme show that the extended jet holes generate much higher local heat transfer levels and provide more uniform heat transfer distributions over the target plate, resulting in the highest improvement of approximately 36% in the Nusselt number. Although the extended jet hole configuration requires a higher pumping power to drive the flow through the impingement system, the gain of heat transfer prevails over the penalty of flow losses. At the same pumping power consumption, the extended jet hole design also has more than 10% higher heat transfer than the baseline scheme.


2011 ◽  
Vol 133 (12) ◽  
Author(s):  
Lei Wang ◽  
Bengt Sundén ◽  
Andreas Borg ◽  
Hans Abrahamsson

The heat transfer characteristics of an impinging jet into a crossflow have been investigated by the liquid crystal thermography technique. The jet nozzle is circular and is inclined at 10 deg with respect to the target wall. In a turbulent flow regime, the effects of the jet Reynolds number, the velocity ratio, and the crossflow Reynolds number on the heat transfer are examined. The results show that the heat transfer patterns are strongly affected by the jet Reynolds number and the velocity ratio. For a given jet Reynolds number, it is found that the crossflow diminishes the peak Nusselt number in the jet impingement region. However, in the wall jet region, the results suggest that the local heat transfer is nearly independent of the crossflow Reynolds number.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4327
Author(s):  
Min-Seob Shin ◽  
Santhosh Senguttuvan ◽  
Sung-Min Kim

The present study experimentally and numerically investigates the effect of channel height on the flow and heat transfer characteristics of a channel impingement cooling configuration for various jet Reynolds numbers in the range of 2000–8600. A single array consisting of eleven jets with 0.8 mm diameter injects water into the channel with 2 mm width at four different channel heights (3, 4, 5, and 6 mm). The average heat transfer coefficients at the target surface are measured by maintaining a temperature difference between the jet exit and the target surface in the range of 15–17 °C for each channel height. The experimental results show the average heat transfer coefficient at the target surface increases with the jet Reynolds number and decreases with the channel height. An average Nusselt number correlation is developed based on 85 experimentally measured data points with a mean absolute error of less than 4.31%. The numerical simulation accurately predicts the overall heat transfer rate within 10% error. The numerical results are analyzed to investigate the flow structure and its effect on the local heat transfer characteristics. The present study advances the primary understanding of the flow and heat transfer characteristics of the channel impingement cooling configuration with liquid jets.


Sign in / Sign up

Export Citation Format

Share Document