scholarly journals The history of star formation in the Galactic young open cluster NGC 6231

2006 ◽  
Vol 2 (S237) ◽  
pp. 485-485
Author(s):  
Mario E. van den Ancker

AbstractWe study the star formation history of the galactic young open cluster NGC 6231 using new, deep, wide-field BVRI imaging. Contrary to previous suggestions, we do not find a lack of low-mass cluster members; our derived mass function is compatible with a Salpeter IMF. The star formation history of NGC 6231 appears to be bi-modal, with a first wave of star formation activity 3–5 Myr ago, followed by a new generation of stars forming ~ 1 Myr ago.

1998 ◽  
Vol 11 (1) ◽  
pp. 130-131
Author(s):  
L. Van Zee

Abstract The results of an investigation of the evolutionary status of fifteen gas-rich, low surface brightness dwarf galaxies (LSBDGs) are presented. LSBDGs are defined by unusually high values of MH/LB and the presence of extended HI envelopes. At both the present epoch and the past, the star formation process appears to be inefficient: the LSBDGs are underluminous for their HI mass and very little active star formation is currently observed. Analysis of global optical colors and elemental enrichments indicate that these objects are not “young” systems; rather, star formation has been occurring for several Gyr. One clue to the star formation history of these objects is that the global gas density is significantly lower than the Toomre instability criterion throughout the gas disk. Local peaks in the HI surface density, however, approach the instability criterion and are correlated with sites of active star formation. Thus, while star formation appears to be inhibited globally, the local gas distribution plays a crucial role in regulating the star formation activity in these low mass galaxies.


2019 ◽  
Vol 15 (S359) ◽  
pp. 386-390
Author(s):  
Lucimara P. Martins

AbstractWith the exception of some nearby galaxies, we cannot resolve stars individually. To recover the galaxies star formation history (SFH), the challenge is to extract information from their integrated spectrum. A widely used tool is the full spectral fitting technique. This consists of combining simple stellar populations (SSPs) of different ages and metallicities to match the integrated spectrum. This technique works well for optical spectra, for metallicities near solar and chemical histories not much different from our Galaxy. For everything else there is room for improvement. With telescopes being able to explore further and further away, and beyond the optical, the improvement of this type of tool is crucial. SSPs use as ingredients isochrones, an initial mass function, and a library of stellar spectra. My focus are the stellar libraries, key ingredient for SSPs. Here I talk about the latest developments of stellar libraries, how they influence the SSPs and how to improve them.


2020 ◽  
Vol 501 (2) ◽  
pp. 1568-1590
Author(s):  
Lukas J Furtak ◽  
Hakim Atek ◽  
Matthew D Lehnert ◽  
Jacopo Chevallard ◽  
Stéphane Charlot

ABSTRACT We present new measurements of the very low mass end of the galaxy stellar mass function (GSMF) at z ∼ 6−7 computed from a rest-frame ultraviolet selected sample of dropout galaxies. These galaxies lie behind the six Hubble Frontier Field clusters and are all gravitationally magnified. Using deep Spitzer/IRAC and Hubble Space Telescope imaging, we derive stellar masses by fitting galaxy spectral energy distributions and explore the impact of different model assumptions and parameter degeneracies on the resulting GSMF. Our sample probes stellar masses down to $M_{\star }\gt 10^{6}\, \text{M}_{\odot}$ and we find the z ∼ 6−7 GSMF to be best parametrized by a modified Schechter function that allows for a turnover at very low masses. Using a Monte Carlo Markov chain analysis of the GSMF, including accurate treatment of lensing uncertainties, we obtain a relatively steep low-mass end slope $\alpha \simeq -1.96_{-0.08}^{+0.09}$ and a turnover at $\log (M_T/\text{M}_{\odot})\simeq 7.10_{-0.56}^{+0.17}$ with a curvature of $\beta \simeq 1.00_{-0.73}^{+0.87}$ for our minimum assumption model with constant star formation history (SFH) and low dust attenuation, AV ≤ 0.2. We find that the z ∼ 6−7 GSMF, in particular its very low mass end, is significantly affected by the assumed functional form of the star formation history and the degeneracy between stellar mass and dust attenuation. For example, the low-mass end slope ranges from $\alpha \simeq -1.82_{-0.07}^{+0.08}$ for an exponentially rising SFH to $\alpha \simeq -2.34_{-0.10}^{+0.11}$ when allowing AV of up to 3.25. Future observations at longer wavelengths and higher angular resolution with the James Webb Space Telescope are required to break these degeneracies and to robustly constrain the stellar mass of galaxies on the extreme low-mass end of the GSMF.


2008 ◽  
Vol 4 (S256) ◽  
pp. 281-286
Author(s):  
Carme Gallart ◽  
Ingrid Meschin ◽  
Antonio Aparicio ◽  
Peter B. Stetson ◽  
Sebastián L. Hidalgo

AbstractBased on the quantitative analysis of a set of wide-field color—magnitude diagrams reaching the old main sequence-turnoffs, we present new LMC star-formation histories, and their variation with galactocentric distance. Some coherent features are found, together with systematic variations of the star-formation history among the three fields analyzed. We find two main episodes of star formation in all three fields, from 1 to 4 and 7 to 13 Gyr ago, with relatively low star formation around ≃ 4–7 Gyr ago. The youngest age in each field gradually increases with galactocentric radius; in the innermost field, LMC 0514–6503, an additional star formation event younger than 1 Gyr is detected, with star formation declining, however, in the last ≃ 200 Myr. The population is found to be older on average toward the outer part of the galaxy, although star formation in all fields seems to have started around 13 Gyr ago.


2018 ◽  
Vol 14 (S344) ◽  
pp. 429-436
Author(s):  
Hakim Atek

AbstractDwarf galaxies represent the dominant population at high redshift and they most likely contributed in great part to star formation history of the Universe and cosmic reionization. The importance of dwarf galaxies at high redshift has been mostly recognized in the last decade due to large progress in observing facilities allowing deep galaxy surveys to identify low-mass galaxies. This population appear to have extreme emission lines and ionizing properties that challenge stellar population models. Star formation follows a stochastic process in these galaxies, which has important implication on the ionizing photon production and its escape fraction whose measurements are challenging for both simulations and observations. Outstanding questions include: what are the physical properties at the origin of such extreme properties? What are the smallest dark matter halos that host star formation? Are dwarf galaxies responsible for cosmic reionization?


2015 ◽  
Vol 585 ◽  
pp. A20 ◽  
Author(s):  
Xiaoyu Kang ◽  
Fenghui Zhang ◽  
Ruixiang Chang ◽  
Lang Wang ◽  
Liantao Cheng

2015 ◽  
Vol 12 (S316) ◽  
pp. 77-83
Author(s):  
Michele Cignoni ◽  

AbstractI will present new results on the star formation history of 30 Doradus in the Large Magellanic Cloud based on the panchromatic imaging survey Hubble Tarantula Treasury Project (HTTP). Here the focus is on the starburst cluster NGC2070. The star formation history is derived by comparing the deepest ever optical and NIR color-magnitude diagrams (CMDs) with state-of-the-art synthetic CMDs generated with the latest PARSEC models, which include all stellar phases from pre-main sequence to post-main sequence. For the first time in this region we are able to measure the star formation using intermediate and low mass stars simultaneously. Our results suggest that NGC2070 experienced a prolonged activity. I will discuss the detailed star formation history, initial mass function and reddening distribution.


2017 ◽  
Vol 468 (3) ◽  
pp. 2684-2698 ◽  
Author(s):  
Neelam Panwar ◽  
M. R. Samal ◽  
A. K. Pandey ◽  
J. Jose ◽  
W. P. Chen ◽  
...  

2020 ◽  
Vol 501 (1) ◽  
pp. 302-328
Author(s):  
Jairo A Alzate ◽  
Gustavo Bruzual ◽  
Daniel J Díaz-González

ABSTRACT The Gaia data release 2 (DR2) catalogue is the best source of stellar astrometric and photometric data available today. The history of the Milky Way galaxy is written in stone in this data set. Parallaxes and photometry tell us where the stars are today, when were they formed, and with what chemical content, that is, their star formation history (SFH). We develop a Bayesian hierarchical model suited to reconstruct the SFH of a resolved stellar population. We study the stars brighter than $G\, =\, 15$ within 100 pc of the Sun in Gaia DR2 and derive an SFH of the solar neighbourhood in agreement with previous determinations and improving upon them because we detect chemical enrichment. Our results show a maximum of star formation activity about 10 Gyr ago, producing large numbers of stars with slightly below solar metallicity (Z  =  0.014), followed by a decrease in star formation up to a minimum level occurring around 8 Gyr ago. After a quiet period, star formation rises to a maximum at about 5 Gyr ago, forming stars of solar metallicity (Z  =  0.017). Finally, star formation has been decreasing until the present, forming stars of Z  =  0.03 at a residual level. We test the effects introduced in the inferred SFH by ignoring the presence of unresolved binary stars in the sample, reducing the apparent limiting magnitude, and modifying the stellar initial mass function.


Sign in / Sign up

Export Citation Format

Share Document