Special-purpose computing for dense stellar systems

2006 ◽  
Vol 2 (14) ◽  
pp. 424-425 ◽  
Author(s):  
Junichiro Makino

AbstractI'll describe the current status of the GRAPE-DR project. The GRAPE-DR is the next-generation hardware for N-body simulation. Unlike the previous GRAPE hardwares, it is programmable SIMD machine with a large number of simple processors integrated into a single chip. The GRAPE-DR chip consists of 512 simple processors and operates at the clock speed of 500 MHz, delivering the theoretical peak speed of 512/226 Gflops (single/double precision). As of August 2006, the first prototype board with the sample chip successfully passed the test we prepared. The full GRAPE-DR system will consist of 4096 chips, reaching the theoretical peak speed of 2 Pflops.

2003 ◽  
Vol 208 ◽  
pp. 13-24
Author(s):  
Junichiro Makino

I'll briefly overview the present status and the future of the GRAPE project. GRAPE (GRAvity PiPE) project is a project to design, develop and use special-purpose computers for astrophysical N-body simulations to do large-scale N-body simulations. Our first machine, GRAPE-1 was completed in 1989 and offered the speed of 240 Mflops. Since then, we have continued to develop newer and faster machines, and the newest machine, the GRAPE-6, has achieved the peak speed of 32 Tflops. I'll briefly discuss GRAPE-6 and its parallel architecture, and then discuss the possible form of GRAPE-7, the next generation machines.


Author(s):  
Marta Losada

In this paper we present the current status of searches for neutral long-lived particles. The basic formalism that allows the determination of the number of expected long-lived particles is presented. Heavy neutral leptons can be a type of long-lived particles. The main observational motivations for the existence of heavy neutral lepton is covered as well. A summary of the main results from both collider searches and fixed target/beam dump experiments is presented. The outlook for next generation experiments and their impact on the parameter space of coupling strength and mass of heavy neutral leptons is also discussed.


ESMO Open ◽  
2020 ◽  
Vol 5 (5) ◽  
pp. e000872
Author(s):  
Samantha O Perakis ◽  
Sabrina Weber ◽  
Qing Zhou ◽  
Ricarda Graf ◽  
Sabine Hojas ◽  
...  

ObjectivePrecision oncology depends on translating molecular data into therapy recommendations. However, with the growing complexity of next-generation sequencing-based tests, clinical interpretation of somatic genomic mutations has evolved into a formidable task. Here, we compared the performance of three commercial clinical decision support tools, that is, NAVIFY Mutation Profiler (NAVIFY; Roche), QIAGEN Clinical Insight (QCI) Interpret (QIAGEN) and CureMatch Bionov (CureMatch).MethodsIn order to obtain the current status of the respective tumour genome, we analysed cell-free DNA from patients with metastatic breast, colorectal or non-small cell lung cancer. We evaluated somatic copy number alterations and in parallel applied a 77-gene panel (AVENIO ctDNA Expanded Panel). We then assessed the concordance of tier classification approaches between NAVIFY and QCI and compared the strategies to determine actionability among all three platforms. Finally, we quantified the alignment of treatment suggestions across all decision tools.ResultsEach platform varied in its mode of variant classification and strategy for identifying druggable targets and clinical trials, which resulted in major discrepancies. Even the frequency of concordant actionable events for tier I-A or tier I-B classifications was only 4.3%, 9.5% and 28.4% when comparing NAVIFY with QCI, NAVIFY with CureMatch and CureMatch with QCI, respectively, and the obtained treatment recommendations differed drastically.ConclusionsTreatment decisions based on molecular markers appear at present to be arbitrary and dependent on the chosen strategy. As a consequence, tumours with identical molecular profiles would be differently treated, which challenges the promising concepts of genome-informed medicine.


Nanoscale ◽  
2019 ◽  
Vol 11 (41) ◽  
pp. 19012-19057 ◽  
Author(s):  
Jin-Sung Park ◽  
Jin Koo Kim ◽  
Jeong Hoo Hong ◽  
Jung Sang Cho ◽  
Seung-Keun Park ◽  
...  

We present a thorough review on the advances of the aerosol spray processes for synthesis of nanostructured materials for next-generation rechargeable batteries, including the insights into formation mechanism, current status, and future outlook.


2014 ◽  
Vol 9 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Alexander G. Tyapin ◽  

The author here shares his vision of next-generation models for seismic soil-structure interaction (SSI) analysis. These models should combine reasonable considerations of wave effects in half-infinite soil with a correct representation of nonlinearity in the structure, and in both the so-called near field, i.e., in that part of soil near a base mat, and in the soil-structure contact surface. The far field, i.e., all of the soil except for the near field, is treated as a linear horizontally layered medium, as is currently done in the well-known program SASSI. The importance of considering nonlinear effects even in very stiff structures like NPPs was shown by the March 2011 Great East Japan Earthquake that hit northeastern Japan’s Pacific coast. Although the idea of calculating SSI wave effects in the time domain has been around for several decades ago, current NPP design practices are linear. Next-generation SSI models should enable practical time-domain analysis. The author suggests a road map – the sequence of problems to be solved to achieve a proposed level. Some of these problems have already been solved, at least in principle, but other solutions are yet to be found. The author describes the current status of his research and ideas about implementing modern computational techniques such as parallel computation.


2011 ◽  
Vol 20 (10) ◽  
pp. 2081-2086
Author(s):  
BALA R IYER

Over the last decade gravitational waveforms of binary black holes have been investigated using a variety of approaches like the Multipolar post-Minkowskian formalism, Numerical Relativity and the Effective-One-Body method. We review these complementary approaches and summarize the current status of these investigations of relevance to construct the best templates for the next generation Advanced gravitational wave detectors.


Sign in / Sign up

Export Citation Format

Share Document