scholarly journals The ecology of the galactic centre: Nuclear stellar clusters and supermassive black holes

2019 ◽  
Vol 14 (S351) ◽  
pp. 80-83 ◽  
Author(s):  
Melvyn B. Davies ◽  
Abbas Askar ◽  
Ross P. Church

AbstractSupermassive black holes are found in most galactic nuclei. A large fraction of these nuclei also contain a nuclear stellar cluster surrounding the black hole. Here we consider the idea that the nuclear stellar cluster formed first and that the supermassive black hole grew later. In particular we consider the merger of three stellar clusters to form a nuclear stellar cluster, where some of these clusters contain a single intermediate-mass black hole (IMBH). In the cases where multiple clusters contain IMBHs, we discuss whether the black holes are likely to merge and whether such mergers are likely to result in the ejection of the merged black hole from the nuclear stellar cluster. In some cases, no supermassive black hole will form as any merger product is not retained. This is a natural pathway to explain those galactic nuclei that contain a nuclear stellar cluster but apparently lack a supermassive black hole; M33 being a nearby example. Alternatively, if an IMBH merger product is retained within the nuclear stellar cluster, it may subsequently grow, e.g. via the tidal disruption of stars, to form a supermassive black hole.

2021 ◽  
Vol 502 (2) ◽  
pp. 2682-2700
Author(s):  
Abbas Askar ◽  
Melvyn B Davies ◽  
Ross P Church

ABSTRACT Supermassive black holes (SMBHs) are found in most galactic nuclei. A significant fraction of these nuclei also contains a nuclear stellar cluster (NSC) surrounding the SMBH. In this paper, we consider the idea that the NSC forms first, from the merger of several stellar clusters that may contain intermediate-mass black holes (IMBHs). These IMBHs can subsequently grow in the NSC and form an SMBH. We carry out N-body simulations of the simultaneous merger of three stellar clusters to form an NSC, and investigate the outcome of simulated runs containing zero, one, two, and three IMBHs. We find that IMBHs can efficiently sink to the centre of the merged cluster. If multiple merging clusters contain an IMBH, we find that an IMBH binary is likely to form and subsequently merge by gravitational wave emission. We show that these mergers are catalyzed by dynamical interactions with surrounding stars, which systematically harden the binary and increase its orbital eccentricity. The seed SMBH will be ejected from the NSC by the recoil kick produced when two IMBHs merge, if their mass ratio q ≳ 0.15. If the seed is ejected then no SMBH will form in the NSC. This is a natural pathway to explain those galactic nuclei that contain an NSC but apparently lack an SMBH, such as M33. However, if an IMBH is retained then it can seed the growth of an SMBH through gas accretion and tidal disruption of stars.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040054
Author(s):  
M. Yu. Piotrovich ◽  
V. L. Afanasiev ◽  
S. D. Buliga ◽  
T. M. Natsvlishvili

Based on spectropolarimetry for a number of active galactic nuclei in Seyfert 1 type galaxies observed with the 6-m BTA telescope, we have estimated the spins of the supermassive black holes at the centers of these galaxies. We have determined the spins based on the standard Shakura-Sunyaev accretion disk model. More than 70% of the investigated active galactic nuclei are shown to have Kerr supermassive black holes with a dimensionless spin greater than 0.9.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 279
Author(s):  
Zdeněk Stuchlík ◽  
Jaroslav Vrba

We study epicyclic oscillatory motion along circular geodesics of the Simpson–Visser meta-geometry describing in a unique way regular black-bounce black holes and reflection-symmetric wormholes by using a length parameter l. We give the frequencies of the orbital and epicyclic motion in a Keplerian disc with inner edge at the innermost circular geodesic located above the black hole outer horizon or on the our side of the wormhole. We use these frequencies in the epicyclic resonance version of the so-called geodesic models of high-frequency quasi-periodic oscillations (HF QPOs) observed in microquasars and around supermassive black holes in active galactic nuclei to test the ability of this meta-geometry to improve the fitting of HF QPOs observational data from the surrounding of supermassive black holes. We demonstrate that this is really possible for wormholes with sufficiently high length parameter l.


2021 ◽  
Vol 2021 (11) ◽  
pp. 059
Author(s):  
Z. Stuchlík ◽  
J. Vrba

Abstract Recently introduced exact solution of the Einstein gravity coupled minimally to an anisotropic fluid representing dark matter can well represent supermassive black holes in galactic nuclei with realistic distribution of dark matter around the black hole, given by the Hernquist-like density distribution. For these fluid-hairy black hole spacetimes, properties of the gravitational radiation, quasinormal ringing, and optical phenomena were studied, giving interesting results. Here, using the range of physical parameters of these spacetimes allowing for their relevance in astrophysics, we study the epicyclic oscillatory motion of test particles in these spacetimes. The frequencies of the orbital and epicyclic motion are applied in the epicyclic resonance variant of the geodesic model of quasiperiodic oscillations (QPOs) observed in active galactic nuclei to demonstrate the possibility to solve the cases where the standard vacuum black hole spacetimes are not allowing for explanation of the observed data. We demonstrate that the geodesic model can explain the QPOs observed in most of the active galactic nuclei for the fluid-hairy black holes with reasonable halo parameters.


2013 ◽  
Vol 9 (S304) ◽  
pp. 188-194
Author(s):  
Ezequiel Treister ◽  
Claudia M. Urry ◽  
Kevin Schawinski ◽  
Brooke D. Simmons ◽  
Priyamvada Natarajan ◽  
...  

AbstractIn order to fully understand galaxy formation we need to know when in the cosmic history are supermassive black holes (SMBHs) growing more intensively, in what type of galaxies this growth is happening and what fraction of these sources are invisible at most wavelengths due to obscuration. Active Galactic Nuclei (AGN) population synthesis models that can explain the spectral shape and intensity of the cosmic X-ray background (CXRB) indicate that most of the SMBH growth occurs in moderate-luminosity (LX~ 1044 erg/s) sources (Seyfert-type AGN), at z~ 0.5−1 and in heavily obscured but Compton-thin, NH~ 1023cm−2, systems. However, this is not the complete history, as a large fraction of black hole growth does not emit significantly in X-rays either due to obscuration, intrinsic low luminosities or large distances. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, 22%, occurs in heavily-obscured systems that are not individually detected in even the deepest X-ray observations. We further investigate the AGN triggering mechanism as a function of bolometric luminosity, finding evidence for a strong connection between significant black hole growth events and major galaxy mergers from z~ 0 to z~ 3, while less spectacular but longer accretion episodes are most likely due to other (stochastic) processes. AGN activity triggered by major galaxies is responsible for ~60% of the total black hole growth. Finally, we constrain the total accreted mass density in supermassive black holes at z > 6, inferred via the upper limit derived from the integrated X-ray emission from a sample of photometrically selected galaxy candidates. We estimate an accreted mass density <1000 M⊙Mpc−3 at z~ 6, significantly lower than the previous predictions from some existing models of early black hole growth and earlier prior observations.


2001 ◽  
Vol 555 (2) ◽  
pp. L79-L82 ◽  
Author(s):  
Laura Ferrarese ◽  
Richard W. Pogge ◽  
Bradley M. Peterson ◽  
David Merritt ◽  
Amri Wandel ◽  
...  

2019 ◽  
Vol 488 (4) ◽  
pp. 4497-4503 ◽  
Author(s):  
Vincent Desjacques ◽  
Adi Nusser

ABSTRACT If the dark matter is made of ultralight axions, stable solitonic cores form at the centres of virialized haloes. In some range for the mass m of the axion particle, these cores are sufficiently compact and can mimic supermassive black holes (SMBH) residing at galactic nuclei. We use the solitonic core–halo mass relation, validated in numerical simulations, to constrain a new range of allowed axion mass from measurements of the SMBH mass in (pseudo)bulge and bulgeless galaxies. These limits are based on observations of galactic nuclei on scales smaller than 10 pc. Our analysis suggests that $m\lesssim 10^{-18}\, {\rm eV}$ is ruled out by the data. We briefly discuss whether an attractive self-interaction among axions could alleviate this constraint.


2006 ◽  
Vol 2 (S238) ◽  
pp. 345-346
Author(s):  
Carlos H. Coimbra-Araújo ◽  
Amâncio C. S. Friaça

AbstractWe show, performing a viable cosmological window, that only the magneto hydrodynamic (MHD) disk model is capable to explain how an intermediate mass black hole (IMBH) (with masses ∼ 103M⊙) grows unto a supermassive black hole (SMBH) (with masses ∼ 107M⊙). We still calculate the supermassive stars sequence of stability. Those stars, with synthetized helium or oxygen cores, collapse to form IMBHs. In our calculation we show that the primordial stars must have rapid rotation if they are in the stable part of the sequence.


Author(s):  
Abraham Loeb ◽  
Steven R. Furlanetto

This chapter analyzes formation mechanisms for supermassive black holes, their observable characteristics, and their interactions with their host galaxies and the wider Universe. A black hole is the end product of the complete gravitational collapse of a material object, such as a massive star. It is surrounded by a horizon from which even light cannot escape. Astrophysical black holes appear in two flavors: stellar-mass black holes that form when massive stars die, and the monstrous supermassive black holes that sit at the center of galaxies, reaching masses of up to ten billion Suns. The latter type is observed as active galactic nuclei (AGN), and the chapter introduces the quasar—a point-like (“quasi-stellar”) bright source at the center of a galaxy which serves as the most powerful type of AGN—in discussing the observable nature of supermassive black holes.


2003 ◽  
Vol 208 ◽  
pp. 455-456
Author(s):  
Jeremy Tinker ◽  
Barbara Ryden

We present results of numerical simulations of mergers of spiral galaxies using GADGET (Springel, Yoshida, & White 2001). In three of these simulations one of the progenitor galaxies contained a central supermassive black hole (BH), as well as one simulation which did not contain a BH. The merger remnants were evolved to an age of ∼ 13 Gyr to examine the evolution of the shape of each merger remnant. The results of these simulations were compared to observations of elliptical galaxies, which show that older galaxies appear rounder than younger ones (Ryden, Forbes, & Terlevich 2001).We found that the simulations in which the BH mass was fixed throughout the evolution influence the shape of their host galaxies on timescales less than 3 Gyr. These simulations show little trend of shape with age beyond this time. In the simulations in which the BH mass increased linearly over the duration of the simulation, there is a significant evolution of the shape of the remnant throughout its lifetime, comparable to the observational trend.


Sign in / Sign up

Export Citation Format

Share Document