Radio Polarization and Magnetic Fields in Six Supernova Remnants

1989 ◽  
Vol 8 (2) ◽  
pp. 187-194 ◽  
Author(s):  
D. K. Milne ◽  
J. L. Caswell ◽  
M. J. Kesteven ◽  
R. F. Haynes ◽  
R. S. Roger

Abstract8.4 GHz linear polarization maps, obtained with the Parkes radio telescope, are presented for six southern supernova remnants. These results are compared with published and unpublished polarization maps at 5 GHz to derive the magnetic field direction and Faraday rotation measure distribution.These results are part of a program to map the magnetic fields in galactic supernova remnants and complement our program to obtain high-resolution maps of galactic SNRs using the Molonglo Observatory Synthesis Telescope; five new Molonglo maps are presented here.

2008 ◽  
Vol 4 (S259) ◽  
pp. 75-80 ◽  
Author(s):  
Roland Kothes ◽  
Jo-Anne Brown

AbstractAs Supernova remnants expand, their shock waves are freezing in and compressing the magnetic field lines they encounter; consequently we can use Supernova remnants as magnifying glasses for their ambient magnetic fields. We will describe a simple model to determine emission, polarization, and rotation measure characteristics of adiabatically expanding Supernova remnants and how we can exploit this model to gain information about the large scale magnetic field in our Galaxy. We will give two examples: The SNR DA530, which is located high above the Galactic plane, reveals information about the magnetic field in the halo of our Galaxy. The SNR G182.4+4.3 is located close to the anti-centre of our Galaxy and reveals the most probable direction where the large-scale magnetic field is perpendicular to the line of sight. This may help to decide on the large-scale magnetic field configuration of our Galaxy. But more observations of SNRs are needed.


2020 ◽  
Vol 641 ◽  
pp. A121
Author(s):  
Wolfgang Reich ◽  
Patricia Reich ◽  
Xiaohui Sun

Context. In soft X-rays, the Monogem ring is an object with a diameter of 25° located in the Galactic anti-centre. It is believed to be a faint, evolved, local supernova remnant. The ring is also visible in the far-ultraviolet, and a few optical filaments are related. It is not seen at radio wavelengths, as other large supernova remnants are. Aims. We study a narrow about 4.°5 long, faint Hα-filament, G203.7 + 11.5, that is seen towards the centre of the Monogem ring. It causes depolarisation and excessive Faraday rotation of radio polarisation data. Methods. Polarisation observations at λ11 cm and λ21 cm with the Effelsberg 100-m telescope were analysed in addition to WMAP data, extragalactic rotation measures, and Hα data. A Faraday-screen model was applied. Results. From the analysis of the depolarisation properties of the Hα filament, we derived a line-of-sight magnetic field, B||, of 26 ± 5 μG for a distance of 300 pc and an electron density, ne, of 1.6 cm−3. The absolute largest rotation measure of G203.7 + 11.5 is −86 ± 3 rad m−2, where the magnetic field direction has the opposite sign from the large-scale Galactic field. We estimated the average synchrotron emissivity at λ21 cm up to 300 pc distance towards G203.7 + 11.5 to about 1.1 K Tb/kpc, which is higher than typical Milky Way values. Conclusions. The magnetic field within G203.7 + 11.5 is unexpected in direction and strength. Most likely, the filament is related to the Monogem-ring shock, where interactions with ambient clouds may cause local magnetic field reversals. We confirm earlier findings of an enhanced but direction-dependent local synchrotron emissivity.


2020 ◽  
Vol 500 (1) ◽  
pp. 153-176
Author(s):  
Stefan Reissl ◽  
Amelia M Stutz ◽  
Ralf S Klessen ◽  
Daniel Seifried ◽  
Stefanie Walch

ABSTRACT The degree to which the formation and evolution of clouds and filaments in the interstellar medium is regulated by magnetic fields remains an open question. Yet the fundamental properties of the fields (strength and 3D morphology) are not readily observable. We investigate the potential for recovering magnetic field information from dust polarization, the Zeeman effect, and the Faraday rotation measure (RM) in a SILCC-Zoom magnetohydrodynamic (MHD) filament simulation. The object is analysed at the onset of star formation and it is characterized by a line-mass of about $\mathrm{\left(M/L\right) \sim 63\ \mathrm{M}_{\odot }\ pc^{-1}}$ out to a radius of $1\,$ pc and a kinked 3D magnetic field morphology. We generate synthetic observations via polaris radiative transfer (RT) post-processing and compare with an analytical model of helical or kinked field morphology to help interpreting the inferred observational signatures. We show that the tracer signals originate close to the filament spine. We find regions along the filament where the angular dependence with the line of sight (LOS) is the dominant factor and dust polarization may trace the underlying kinked magnetic field morphology. We also find that reversals in the recovered magnetic field direction are not unambiguously associated to any particular morphology. Other physical parameters, such as density or temperature, are relevant and sometimes dominant compared to the magnetic field structure in modulating the observed signal. We demonstrate that the Zeeman effect and the RM recover the line-of-sight magnetic field strength to within a factor 2.1–3.4. We conclude that the magnetic field morphology may not be unambiguously determined in low-mass systems by observations of dust polarization, Zeeman effect, or RM, whereas the field strengths can be reliably recovered.


1969 ◽  
Vol 1 (6) ◽  
pp. 274-276 ◽  
Author(s):  
L. J. Gleeson ◽  
M. P. C. Legg ◽  
K. C. Westfold

This paper is a preliminary account of the calculation of the circularly polarized synchrotron radiation received from a distribution of electricallycharged particles confined to a thin shell in the magnetic field of a dipole. Calculations of the total radiation and the degree of linear polarization have previously been carried out, and these calculations are duplicated in part.


1993 ◽  
Vol 139 ◽  
pp. 132-132
Author(s):  
G. Mathys

Magnetic field appears to play a major role in the pulsations of rapidly oscillating Ap (roAp) stars. Understanding of the behaviour of these objects thus requires knowledge of their magnetic field. Such knowledge is in particular essential to interpret the modulation of the amplitude of the photometric variations (with a frequency very close to the rotation frequency of the star) and to understand the driving mechanism of the pulsation. Therefore, a systematic programme of study of the magnetic field of roAp stars has been started, of which preliminary (and still very partial) results are presented here.Magnetic fields of Ap stars can be diagnosed from the Zeeman effect that they induced in spectral lines either from the observation of line-splitting in high-resolution unpolarized spectra (which only occurs in favourable circumstances) or from the observation of circular polarization of the lines in medium- to high-resolution spectra.


1997 ◽  
Vol 163 ◽  
pp. 799-800
Author(s):  
Craig H. Smith ◽  
Christopher M. Wright ◽  
David K. Aitken ◽  
Patrick F. Roche

AbstractWe present the results from mid-infrared spectro-polarimetric observations of a number of bi-polar outflow sources. The specto-polarimetric data provides information on the polarization mechanism and the magnetic field direction. The field direction in the disks of the observed sources is most often normal to the ambient field direction and lies in the plane of the disk, indicating a toroidal rather than poloidal field configuration.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 699-699
Author(s):  
Klaus Dolag ◽  
Alexander M. Beck ◽  
Alexander Arth

AbstractUsing the MHD version of Gadget3 (Stasyszyn, Dolag & Beck 2013) and a model for the seeding of magnetic fields by supernovae (SN), we performed simulations of the evolution of the magnetic fields in galaxy clusters and study their effects on the heat transport within the intra cluster medium (ICM). This mechanism – where SN explosions during the assembly of galaxies provide magnetic seed fields – has been shown to reproduce the magnetic field in Milky Way-like galactic halos (Beck et al. 2013). The build up of the magnetic field at redshifts before z = 5 and the accordingly predicted rotation measure evolution are also in good agreement with current observations. Such magnetic fields present at high redshift are then transported out of the forming protogalaxies into the large-scale structure and pollute the ICM (in a similar fashion to metals transport). Here, complex velocity patterns, driven by the formation process of cosmic structures are further amplifying and distributing the magnetic fields. In galaxy clusters, the magnetic fields therefore get amplified to the observed μG level and produce the observed amplitude of rotation measures of several hundreds of rad/m2. We also demonstrate that heat conduction in such turbulent fields on average is equivalent to a suppression factor around 1/20th of the classical Spitzer value and in contrast to classical, isotropic heat transport leads to temperature structures within the ICM compatible with observations (Arth et al. 2014).


2014 ◽  
Vol 32 (10) ◽  
pp. 1247-1261 ◽  
Author(s):  
L. Turc ◽  
D. Fontaine ◽  
P. Savoini ◽  
E. K. J. Kilpua

Abstract. Magnetic clouds (MCs) are large-scale magnetic flux ropes ejected from the Sun into the interplanetary space. They play a central role in solar–terrestrial relations as they can efficiently drive magnetic activity in the near-Earth environment. Their impact on the Earth's magnetosphere is often attributed to the presence of southward magnetic fields inside the MC, as observed in the upstream solar wind. However, when they arrive in the vicinity of the Earth, MCs first encounter the bow shock, which is expected to modify their properties, including their magnetic field strength and direction. If these changes are significant, they can in turn affect the interaction of the MC with the magnetosphere. In this paper, we use data from the Cluster and Geotail spacecraft inside the magnetosheath and from the Advanced Composition Explorer (ACE) upstream of the Earth's environment to investigate the impact of the bow shock's crossing on the magnetic structure of MCs. Through four example MCs, we show that the evolution of the MC's structure from the solar wind to the magnetosheath differs largely from one event to another. The smooth rotation of the MC can either be preserved inside the magnetosheath, be modified, i.e. the magnetic field still rotates slowly but at different angles, or even disappear. The alteration of the magnetic field orientation across the bow shock can vary with time during the MC's passage and with the location inside the magnetosheath. We examine the conditions encountered at the bow shock from direct observations, when Cluster or Geotail cross it, or indirectly by applying a magnetosheath model. We obtain a good agreement between the observed and modelled magnetic field direction and shock configuration, which varies from quasi-perpendicular to quasi-parallel in our study. We find that the variations in the angle between the magnetic fields in the solar wind and in the magnetosheath are anti-correlated with the variations in the shock obliquity. When the shock is in a quasi-parallel regime, the magnetic field direction varies significantly from the solar wind to the magnetosheath. In such cases, the magnetic field reaching the magnetopause cannot be approximated by the upstream magnetic field. Therefore, it is important to take into account the conditions at the bow shock when estimating the impact of an MC with the Earth's environment because these conditions are crucial in determining the magnetosheath magnetic field, which then interacts with the magnetosphere.


2019 ◽  
Vol 52 (5) ◽  
pp. 945-950 ◽  
Author(s):  
Shulin Dong ◽  
Tie Liu ◽  
Meng Dong ◽  
Shuang Wang ◽  
Wen Wang ◽  
...  

This paper investigates how applying high magnetic fields influences the crystallographic orientations of the primary and eutectic phases, and their relationship, in a binary eutectic alloy. At 0 T, the primary MnSb phase in hypoeutectic Mn–Sb showed a random orientation, but at 3, 6, 9 and 11.5 T, its c axis was perpendicular to the magnetic field direction. In all cases, the eutectic MnSb phases showed the same orientations as their neighboring primary MnSb phase, on which they nucleated and grew. With high magnetic fields, the c axes of the eutectic and primary MnSb phases were oriented perpendicular to the magnetic field direction. The results show that applying a high magnetic field during solidification is a way of controlling the crystallographic orientation of both the primary and the eutectic phases in eutectic alloys.


1968 ◽  
Vol 21 (2) ◽  
pp. 201 ◽  
Author(s):  
DK Milne

Radio observations are presented of the fairly large galactic complex Vela-X, Y, and Z. These sources are believed to be the remnant of a supernova having an optical identification with the filamentary nebula Stromlo 16. The brightness distributions, obtained at four frequencies, indicate an open annular structure reminiscent of other supernova remnants. The variation of spectral index over the region is investigated and shows that the radiation is substantially nontherm81, the integrated fluxes yielding a spectral index of -0,3. A high resolution distribution of magnetic field direction is deduced from polarization measurements made at three frequencies; a circumferential magnetic field is a possible interpretation of the field orientations.


Sign in / Sign up

Export Citation Format

Share Document