scholarly journals Observations of Magnetic Fields in Galaxies

1992 ◽  
Vol 9 ◽  
pp. 81-86
Author(s):  
R. Wielebinski

AbstractMagnetic fields are present in every corner of the Universe. The Earth, the Sun and most of the planets are known to possess dipolar magnetic fields. In the Galaxy many individual objects like stars, pulsars, bipolar nebulae and supernova remnants are found to have associated magnetic fields. It seems that the rotation plays a significant role in the ability of a cosmic object to develop a magnetic field. The magnetic field of the Galaxy is observed to be oriented along the galactic plane as evidenced by both optical and radio polarization observations. Radio maps of the Galactic centre reveal poloidal magnetic fields as ‘wisps’ or ‘strings’ around Sagittarius A. Observations of nearby galaxies give us remarkable information about the large-scale magnetic fields in these building blocks of the Universe. Magnetic fields play an important role in the formation of jets of radio galaxies. Further out, in clusters of galaxies, definitive evidence has been given for the existence of intergalactic magnetic fields.

2008 ◽  
Vol 4 (S259) ◽  
pp. 75-80 ◽  
Author(s):  
Roland Kothes ◽  
Jo-Anne Brown

AbstractAs Supernova remnants expand, their shock waves are freezing in and compressing the magnetic field lines they encounter; consequently we can use Supernova remnants as magnifying glasses for their ambient magnetic fields. We will describe a simple model to determine emission, polarization, and rotation measure characteristics of adiabatically expanding Supernova remnants and how we can exploit this model to gain information about the large scale magnetic field in our Galaxy. We will give two examples: The SNR DA530, which is located high above the Galactic plane, reveals information about the magnetic field in the halo of our Galaxy. The SNR G182.4+4.3 is located close to the anti-centre of our Galaxy and reveals the most probable direction where the large-scale magnetic field is perpendicular to the line of sight. This may help to decide on the large-scale magnetic field configuration of our Galaxy. But more observations of SNRs are needed.


1981 ◽  
Vol 4 (2) ◽  
pp. 243-247 ◽  
Author(s):  
W. H. McCutcheon ◽  
B. J. Robinson ◽  
J. B. Whiteoak

Millimetre-wave emission from the CO molecule has proven to be an extremely useful probe of the cold, dense clouds of molecular hydrogen in the Galaxy. Previous studies of the large-scale distribution of CO in the galactic plane (Scoville and Solomon 1975; Burton et al. 1975; Bash and Peters 1976; Burton and Gordon 1978; Solomon et al. 1979b; Cohen et al. 1980) have all been of the northern hemisphere and primarily at longitudes 0° ≤ l ≥ 80°. These studies have revealed the striking characteristic that the CO, and by implication molecular hydrogen clouds, are concentrated in a ring extending from 4 to 8 kpc from the galactic centre. This is in sharp contrast to the atomic hydrogen distribution, which is fairly constant over the extended region from 4 to 13 kpc but correlates well with other Population I indicators.


2018 ◽  
Vol 14 (A30) ◽  
pp. 295-298
Author(s):  
Tina Kahniashvili ◽  
Axel Brandenburg ◽  
Arthur Kosowsky ◽  
Sayan Mandal ◽  
Alberto Roper Pol

AbstractBlazar observations point toward the possible presence of magnetic fields over intergalactic scales of the order of up to ∼1 Mpc, with strengths of at least ∼10−16 G. Understanding the origin of these large-scale magnetic fields is a challenge for modern astrophysics. Here we discuss the cosmological scenario, focussing on the following questions: (i) How and when was this magnetic field generated? (ii) How does it evolve during the expansion of the universe? (iii) Are the amplitude and statistical properties of this field such that they can explain the strengths and correlation lengths of observed magnetic fields? We also discuss the possibility of observing primordial turbulence through direct detection of stochastic gravitational waves in the mHz range accessible to LISA.


1989 ◽  
Vol 136 ◽  
pp. 243-263 ◽  
Author(s):  
F. Yusef-Zadeh

Recent studies of the Galactic center environment have revealed a wealth of new thermal and nonthermal features with unusual characteristics. A system of nonthermal filamentary structures tracing magnetic field lines are found to extend over 200pc in the direction perpendicular to the Galactic plane. Ionized structures, like nonthermal features, appear filamentary and show forbidden velocity fields in the sense of Galactic rotation and large line widths. Faraday rotation characteristics and the flat spectral index distributions of the nonthermal filaments suggest a mixture of thermal and nonthermal gas. Furthermore, the relative spatial distributions of the magnetic structures with respect to those of the ionized and molecular gas suggest a physical interaction between these two systems. In spite of numerous questions concerning the origin of the large-scale organized magnetic structures, the mechanism by which particles are accelerated to relativistic energies, and the source or sources of heating the dust and gas, recent studies have been able to distinguish the inner 200pc of the nucleus from the disk of the Galaxy in at least two more respects: (1) the recognition that the magnetic field has a large-scale structure and is strong, uniform and dynamically important; and (2) the physics of interstellar matter may be dominated by the poloidal component of the magnetic field.


1990 ◽  
Vol 140 ◽  
pp. 215-218 ◽  
Author(s):  
S. Sukumar ◽  
R.J. Allen

Recent VLA 20 cm radio continuum observations of the southern face-on barred spiral M83 reveal that the magnetic field is very highly aligned at the outer regions (~12 kpc radius) and totally disrupted in the inner regions (<6 kpc) of the galaxy. The RM variation suggests an axisymmetric morphology for the magnetic field. VLA 6 cm continuum polarization observations of the edge-on spiral NGC 891 reveal ordered magnetic fields at large Z-distances (~3 kpc) from the galactic plane, probably emanating from the disk through instabilities.


1981 ◽  
Vol 94 ◽  
pp. 223-224 ◽  
Author(s):  
S. Kearsey ◽  
J. L. Osborne ◽  
S. Phillipps ◽  
C.G.T. Haslam ◽  
C. J. Salter ◽  
...  

The all-sky radio continuum map at 408 MHz presented at this symposium by Haslam et al. can be interpreted in terms of the large-scale 3-dimensional distribution of synchrotron emissivity in the Galaxy when due allowance is made for the thermal emission. Its derivation from a 2-dimensional map must involve a number of assumptions so it is instructive to compare the results of alternative approaches (described in detail in forthcoming papers by the present authors). In both cases the variation of emissivity in the galactic plane is obtained from the observed intensity profile at b=0o and then the z-variation is chosen to give the best fit to the complete map. The observed profile is shown in the figure with and without the contributions of catalogued supernova remnants and HII regions.


Galaxies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 37 ◽  
Author(s):  
Kerstin Kunze

Magnetic fields are observed on a large range of scales in the universe. Up until recently, the evidence always pointed to magnetic fields associated with some kind of structure, from planets to clusters of galaxies. Blazar observations have been used to posit the first evidence of truly cosmological magnetic fields or void magnetic fields. A cosmological magnetic field generated in the very early universe before recombination has implications for the cosmic microwave background (CMB), large scale structure as well as the 21 cm line signal. In particular, the Lorentz term causes a change in the linear matter power spectrum. Its implication on the 21 cm line signal was the focus of our recent simulations which will be summarised here. Modelling the cosmological magnetic field as a gaussian random field numerical solutions were found for magnetic fields with present day amplitudes of 5 nG and negative spectral indices which are within the range of observational constraints imposed by the cosmic microwave background (CMB).


1990 ◽  
Vol 140 ◽  
pp. 375-376
Author(s):  
K. R. Anantharamaiah ◽  
A. Pedlar

A number of unique non-thermal filamentary structures, which are all roughly perpendicular to the galactic plane have been discovered in the vicinity of the Galactic centre (see Yusef-Zadeh 1989 and references there in). On the basis of their uniformity, polarization angles, rigidity, and pressure balance with the surrounding medium, it has been hypothesized that a strong polodial field of milligauss strength pervades the inner 50 pc of the Galaxy (Morris and Yusef-Zadeh 1989 and Morris in this volume). We present here a single wide-field image, at λ90cm, which shows all the filamentary structures in this region and show that these observations are consistent with the above hypothesis.


2019 ◽  
Vol 490 (1) ◽  
pp. L1-L5 ◽  
Author(s):  
F Yusef-Zadeh ◽  
M Wardle

Abstract Radio, X-ray, and infrared observations of the inner few hundred parsecs of the Galactic Centre have highlighted two characteristics of the interstellar medium. The cosmic-ray ionization rate derived from molecular ions such as H$^+_3$ is at least two to three orders of magnitude higher than in the Galactic disc. The other is bipolar X-ray and radio emission away from the Galactic plane. These features are consistent with a scenario in which high cosmic-ray pressure drives large-scale winds away from the Galactic plane. The interaction of such a wind with stellar wind bubbles may explain the energetic non-thermal radio filaments found throughout the Galactic Centre. Some of the implications of this scenario is the removal of gas driven by outflowing winds, acting as a feedback to reduce the star formation rate in the central molecular zone (CMZ), and the distortion of azimuthal magnetic field lines in the CMZ to vertical direction away from the plane. The combined effects of the wind and the vertical magnetic field can explain why most magnetized filaments run perpendicular to the galactic plane. This proposed picture suggests our Milky Way nucleus has recently experienced starburst or black hole activity, as recent radio and X-ray observations indicate.


Author(s):  
A. J. Green ◽  
S. N. Reeves ◽  
T. Murphy

AbstractThe second epoch Molonglo Galactic Plane Survey covers the area 245° ⩽l⩽ 365° and |b| ⩽ 10° at a frequency of 843 MHz and an angular resolution of 45 arcsec × 45 arcsec cosec(δ). The sensitivity varies between 1–2 mJy beam− 1depending on the presence of strong extended sources. This survey is currently the highest resolution and most sensitive large-scale continuum survey of the southern Galactic plane. In this paper, we present the images of the complete survey, including postage stamps of some new supernova remnant (SNR) candidates and a discussion of the highly structured features detected in the interstellar medium. The intersection of these two types of features is discussed in the context of the ‘missing’ SNR population in the Galaxy.


Sign in / Sign up

Export Citation Format

Share Document