scholarly journals Magnetic coronae of active main-sequence stars

2008 ◽  
Vol 4 (S259) ◽  
pp. 357-362 ◽  
Author(s):  
Moira Jardine ◽  
Jean-Francois Donati

AbstractThe coronal structure of main sequence stars continues to puzzle us. While the solar corona is relatively well understood, it has become clear that even stars of the same mass as the Sun can display very non-solar coronal behaviour, particularly if they are rapid rotators or in a binary system. At masses greater than and also less than that of the Sun, the non-solar internal structure appears to affect both the geometry and dynamics of the stellar corona and the nature of the X-ray and radio emission. In this talk I will describe some recent advances in our understanding of the structure of the coronae of some of the most active (and interesting) main sequence stars.

1999 ◽  
Vol 16 (3) ◽  
pp. 257-261 ◽  
Author(s):  
Eric E. Mamajek ◽  
Warrick A. Lawson ◽  
Eric D. Feigelson

AbstractA radio continuum survey of X-ray-identified weak-lined T Tauri stars (WTTs) in the newly-discovered η Chamaeleontis cluster has been completed using the Australia Telescope Compact Array (ATCA). The 10 known WTTs in the cluster form a unique sample of codistant late-type pre-main-sequence stars with ages of ~8 Myr and masses ranging from 0·1–1·0 M⊙. Our survey detected none of the 10 X-ray-emitting WTTs with 3σ sensitivity limits at 4·8 and 8·6 GHz (6·2 and 3·5 cm) of typically 0·4 mJy, corresponding to a radio luminosity of 4·5 ×1015 erg Hz−1 s−1. Rotation periods for these stars indicate that they are not, as a group, fast-rotating stars. The non-detection in the radio bands supports the findings of other radio surveys of inhomogeneous samples of young stars, where radio emission is fairly common (10–30%) among very young T Tauri stars across all late spectral types, but confined to rapidly-rotating F-G-K stars amongst older zero-age main sequence stars. Rotation, more than youth, appears to be the key to radio emission in young stars.


1993 ◽  
Vol 137 ◽  
pp. 108-121
Author(s):  
P.E. Nissen

AbstractRecent advances in high S/N spectroscopy are reviewed with particular emphasis on new data for the abundances of chemical elements of importance for the modelling of stellar interiors.It seems well established that young, nearby B-type stars have abundances of CNO elements that are about a factor of two lower than in the Sun except for a small fraction of nitrogen-rich stars. The existence of such stars among main sequence stars remains to be explained.Among normal A-type stars (excluding Am and Ap stars) large deviations from solar abundance ratios occur with interesting anticorrelations of the abundances of C and Si. This suggests that diffusion processes and/or gas-dust separation of the chemical elements in the protostellar cloud play an important rôle.


1966 ◽  
Vol 24 ◽  
pp. 40-43
Author(s):  
O. C. Wilson ◽  
A. Skumanich

Evidence previously presented by one of the authors (1) suggests strongly that chromospheric activity decreases with age in main sequence stars. This tentative conclusion rests principally upon a comparison of the members of large clusters (Hyades, Praesepe, Pleiades) with non-cluster objects in the general field, including the Sun. It is at least conceivable, however, that cluster and non-cluster stars might differ in some fundamental fashion which could influence the degree of chromospheric activity, and that the observed differences in chromospheric activity would then be attributable to the circumstances of stellar origin rather than to age.


1983 ◽  
Vol 66 ◽  
pp. 469-486
Author(s):  
Jørgen Christensen-Dalsgaard ◽  
Søren Frandsen

AbstractEstimates are given for the amplitudes of stochastically excited oscillations in Main Sequence stars and cool giants; these were obtained using the equipartition between convective and pulsational energy which was originally proposed by Goldreich and Keeley. The amplitudes of both velocity and luminosity perturbation generally increase with increasing mass along the Main Sequence as long as convection transports a major fraction of the total flux, and the amplitudes also increase with the age of the model. The 1.5 Mʘ ZAMS model, of spectral type F0, has velocity amplitudes ten times larger than those found in the Sun. For very luminous red supergiants luminosity amplitudes of up to about 0ṃ.1 are predicted, in rough agreement with observations presented by Maeder.


1970 ◽  
Vol 38 ◽  
pp. 232-235
Author(s):  
W. Becker ◽  
R. Fenkart

The Basel Observatory program of the determination of disc- and halo-density gradients for different intervals of absolute magnitude comprises in addition to Milky Way fields several directions, all pointing to Selected Areas near a plane perpendicular to the galactic equator and passing through the sun and the galactic centre. It was started with SA 51 (Becker, 1965) and continued with Sa 57, 54 and 141 (Fenkart, 1967, 1968, 1969).


2019 ◽  
Vol 628 ◽  
pp. A41 ◽  
Author(s):  
D. Pizzocaro ◽  
B. Stelzer ◽  
E. Poretti ◽  
S. Raetz ◽  
G. Micela ◽  
...  

The relation between magnetic activity and rotation in late-type stars provides fundamental information on stellar dynamos and angular momentum evolution. Rotation-activity studies found in the literature suffer from inhomogeneity in the measurement of activity indexes and rotation periods. We overcome this limitation with a study of the X-ray emitting, late-type main-sequence stars observed by XMM-Newton and Kepler. We measured rotation periods from photometric variability in Kepler light curves. As activity indicators, we adopted the X-ray luminosity, the number frequency of white-light flares, the amplitude of the rotational photometric modulation, and the standard deviation in the Kepler light curves. The search for X-ray flares in the light curves provided by the EXTraS (Exploring the X-ray Transient and variable Sky) FP-7 project allows us to identify simultaneous X-ray and white-light flares. A careful selection of the X-ray sources in the Kepler field yields 102 main-sequence stars with spectral types from A to M. We find rotation periods for 74 X-ray emitting main-sequence stars, 20 of which do not have period reported in the previous literature. In the X-ray activity-rotation relation, we see evidence for the traditional distinction of a saturated and a correlated part, the latter presenting a continuous decrease in activity towards slower rotators. For the optical activity indicators the transition is abrupt and located at a period of ~10 d but it can be probed only marginally with this sample, which is biased towards fast rotators due to the X-ray selection. We observe seven bona-fide X-ray flares with evidence for a white-light counterpart in simultaneous Kepler data. We derive an X-ray flare frequency of ~0.15 d−1, consistent with the optical flare frequency obtained from the much longer Kepler time-series.


1980 ◽  
Vol 51 ◽  
pp. 296-297
Author(s):  
G. Belvedere ◽  
L. Paterno ◽  
M. Stix

AbstractWe extend to the lower main sequence stars the analysis of convection interacting with rotation in a compressible spherical shell, already applied to the solar case (Belvedere and Paterno, 1977; Belvedere et al. 1979a). We assume that the coupling constant ε between convection and rotation, does not depend on the spectral type. Therefore we take ε determined from the observed differential rotation of the Sun, and compute differential rotation and magnetic cycles for stars ranging from F5 to MO, namely for those stars which are supposed to possess surface convection zones (Belvedere et al. 1979b, c, d). The results show that the strength of differential rotation decreases from a maximum at F5 down to a minimum at G5 and then increases towards later spectral types. The computations of the magnetic cycles based on the αω-dynamo theory show that dynamo instability decreases from F5 to G5, and then increases towards the later spectral types reaching a maximum at MO. The period of the magnetic cycles increases from a few years at F5 to about 100 years at MO. Also the extension of the surface magnetic activity increases substantially towards the later spectral types. The results are discussed in the framework of Wilson’s (1978) observations.


1997 ◽  
Vol 181 ◽  
pp. 277-285
Author(s):  
Y. Elsworth

Helioseismology provides us with the tools to probe solar activity. So that we can consider how the solar oscillations are influenced by that activity, we first consider the phenomena that we associate with the active Sun. The surface of the Sun is not quiet but shows evidence of convection on a wide range of scales from a few hundred kilometres through to several tens-of-thousands of kilometres. The surface temperature shows signs of the convection structures with the temperature in the bright granules being some 100 K to 200 K hotter than the surrounding dark lanes. Sunspots, which are regions of high magnetic field that suppress convective flows, are clearly visible to even quite crude observations. They are several tens-of-thousands of kilometres in diameter and about 2000 K cooler than their surroundings. Ultraviolet and X-ray pictures from satellites show that the higher layers of the solar atmosphere are very non-uniform with bright regions of high activity. Contemporaneous magnetograms show that these regions are associated with sunspots. Flares - regions of magnetic reconnections - are seen at all wavelengths from X-ray through the visible to radio. They are the non-thermal component of the radio emission of the Sun. There are many other indicators of activity on the Sun.


1957 ◽  
Vol 4 ◽  
pp. 356-357 ◽  
Author(s):  
A. Schlüter

The shift of the emitted frequencies towards lower frequencies during a solar outburst is usually interpreted as due to a progressive rarefaction of the emitting gas. If one assumes that the emitted frequency is identical with the plasma frequency and furthermore that the density of the emitting plasma is similar to the density of the solar corona at the location of the radiating material, then it follows that this material is subject to an acceleration throughout the solar corona which compensates or exceeds the effect of the gravitational field of the sun.


1980 ◽  
Vol 5 ◽  
pp. 419-428 ◽  
Author(s):  
G. S. Vaiana

The standard theory of stellar coronae requires the presence of vigorous surface convection. In consequence, the expectation of such a theory is that stellar x-ray emission — if due to a corona — should be limited to a subset of stars (principally those of main sequence spectral types F and G), and therefore should be relatively rare. This theory also makes detailed predictions about coronal heating, which are subject to test if spatially resolved coronal data are available. We are now in a position to subject the standard coronal scenarios to observational scrutiny on both counts: Skylab and later observations have supplied us with spatially resolved data of the solar corona, while the succession of high-energy x-ray astronomy satellites, culminating with EINSTEIN, now gives us a long-awaited glimpse of stellar x-ray emission throughout the K-R diagram.I will maintain that these new data imply that coronal x-ray emission dominantly derives from plasma structure confined by stellar surface magnetic fields; that coronal heating is likely to be non-acoustic in character and involves the confining magnetic fields; that stellar x-ray emission is not well correlated with the level of surface convection activity. These results of course cast serious doubt upon the viability of the standard theory of stellar coronal formation. In the following, I will try to very briefly summarize the solar and stellar data, to present the context in which they were initially obtained, and very briefly sketch the new coronal picture we are pursuing. The results presented here are excerpted from lectures presented by R. Rosner and myself recently at Erice, Italy (viz. Vaiana 1979) and from the preliminary results of the EINSTEIN Stellar Survey (Vaiana et al. 1979). The latter, part of a larger effort in x-ray astronomy led by R. Giacconi, involves the work of many people, including F.R. Harnden, L. Golub, P. Gorenstein, R. Rosner, F. Seward, K. Topika at CFA, as well as a number of EINSTEIN guest investigators.


Sign in / Sign up

Export Citation Format

Share Document