scholarly journals Solar activity and solar oscillations

1997 ◽  
Vol 181 ◽  
pp. 277-285
Author(s):  
Y. Elsworth

Helioseismology provides us with the tools to probe solar activity. So that we can consider how the solar oscillations are influenced by that activity, we first consider the phenomena that we associate with the active Sun. The surface of the Sun is not quiet but shows evidence of convection on a wide range of scales from a few hundred kilometres through to several tens-of-thousands of kilometres. The surface temperature shows signs of the convection structures with the temperature in the bright granules being some 100 K to 200 K hotter than the surrounding dark lanes. Sunspots, which are regions of high magnetic field that suppress convective flows, are clearly visible to even quite crude observations. They are several tens-of-thousands of kilometres in diameter and about 2000 K cooler than their surroundings. Ultraviolet and X-ray pictures from satellites show that the higher layers of the solar atmosphere are very non-uniform with bright regions of high activity. Contemporaneous magnetograms show that these regions are associated with sunspots. Flares - regions of magnetic reconnections - are seen at all wavelengths from X-ray through the visible to radio. They are the non-thermal component of the radio emission of the Sun. There are many other indicators of activity on the Sun.

Author(s):  
Anton A. Reva ◽  
Sergey V. Kuzin ◽  
Alexey S. Kirichenko ◽  
Artem S. Ulyanov ◽  
Ivan P. Loboda ◽  
...  

Investigations of solar activity require information about plasma in a wide range of temperatures. Generally, researchers require observations from telescopes producing monochromatic images of coronal plasma with cool, warm, and hot temperatures. Until now, monochromatic telescopic imaging has been made only in the Mg XII 8.42 Å line with the Mg XII spectroheliograph on board CORONAS-I, CORONAS-F, and CORONAS-PHOTON satellites. The Mg XII spectroheliograph used Bragg crystal optics. Its design is based on two main principles: (1) to select the working wavelength and the crystal in such a way that reflection occurs at small incident angles; (2) to use the aperture of the mirror as a spectral filter. We believe that these design principles can be applied to other spectral lines. In this article, we will review the design of the Mg XII spectroheliograph and present our thoughts on how to apply these principles to the Si XIV 6.18 Å and Si XIII 6.65 Å lines. A combination of the monochromatic Mg XII 8.42 Å, Si XIV 6.18 Å, and Si XIII 6.65 Å images will help us to study the dynamics of the hot plasma in the solar corona.


2019 ◽  
Vol 489 (4) ◽  
pp. 4589-4605 ◽  
Author(s):  
Prakash Arumugasamy ◽  
Dipanjan Mitra

ABSTRACT PSR J0108–1431 is an old pulsar where the X-ray emission is expected to have a thermal component from the polar cap and a non-thermal component from the magnetosphere. Although the phase-integrated spectra are fit best with a single non-thermal component modelled with a power law (PL) of photon index Γ = 2.9, the X-ray pulse profiles do show the presence of phase-separated thermal and non-thermal components. The spectrum extracted from half the rotational phase away from the X-ray peak fits well with either a single blackbody (BB) or a neutron star atmosphere (NA) model, whereas the spectrum from the rest of the phase range is dominated by a PL. From Bayesian analysis, the estimated BB area is smaller than the expected polar cap area for a dipolar magnetic field with a probability of 86 per cent, whereas the area estimate from the NA model is larger with a probability of 80 per cent. Due to the ambiguity in the thermal emission model, the polar cap area cannot be reliably estimated and hence cannot be used to understand the nature of the surface magnetic field. Instead, we can infer the presence of multipolar magnetic field from the misalignment between the pulsar’s thermal X-ray peak and the radio emission peak. For J0108–1431, we estimated a phase-offset Δϕ > 0.1 between the thermal polar cap emission peak and the radio emission peak and argue that this is best explained by the presence of a multipolar surface magnetic field.


2020 ◽  
Vol 240 ◽  
pp. 07011
Author(s):  
Kushagra Shrivastava ◽  
Keith Wen Kai Chia ◽  
Kang Jun Wong ◽  
Alfred Yong Liang Tan ◽  
Hwee Tiang Ning

Solar activity research provides insight into the Sun’s past, future (Science Daily, 2018). The solar activity includes observations of large numbers of intense sunspots, flares, and other phenomena; and demands a wide range of techniques and measurements on the observations. This research needs long term data collection before critical analyses can occur, to generate meaningful learning and knowledge. In this project, we will use solar imaging to make observations of solar activity, and take our baby steps to make contributions in citizen science. Observations will be made in 3 wavelengths to gain a more thorough analysis by looking at different perspectives of the Sun, namely H-Alpha, Calcium-K, and white light.


1988 ◽  
Vol 20 (1) ◽  
pp. 58-63
Author(s):  
J.C. Henoux

The development of research on starspots, stellar activity, and the suspected relationship between coronal heating and magnetic field have reenforced the interest of the study of the solar magnetic field and the study of the associated thermodynamic structures. Several proceedings of scientific meetings appeared from 1984 to 1987 (Measurements of Solar Vector Magnetic Fields, 1985 (I); The Hydrodynamics of the Sun, 1984 (II); High Resolution in Solar Physics, 1985 (III); Theoritical Problems in High Resolution Solar Physics, 1985 (IV); Small Scale Magnetic Flux Concentration in the Solar Atmosphere, 1986 (V)). The finding that the solar irradiance in affected by solar activity has renewed interest in photometry of sunspots and faculae. Sunspots have been used for investigating solar differential and meridional motions. Some results are also found in Section III.


1976 ◽  
Vol 71 ◽  
pp. 113-118
Author(s):  
P. Ambrož

The measurement of the magnitude of the limb effect was homogenized in time and a recurrent period of maxima of 27.8 days was found. A relation was found between the maximum values of the limb effect of the redshift, the boundaries of polarities of the interplanetary magnetic field, the characteristic large-scale distribution of the background magnetic fields and the complex of solar activity.


1968 ◽  
Vol 35 ◽  
pp. 56-63 ◽  
Author(s):  
Helen W. Dodson ◽  
E. Ruth Hedeman

A graphical representation of the 66 solar rotations (Carrington) between January 1, 1962 and December 31, 1966 has been prepared. It includes all centers of activity for which the calcium plage attained an area of at least 1000 millionths of the solar hemisphere and/or intensity 3 (McMath scale). In this study the antecedents, descendents, and neighbors of each region can easily be discerned. The work shows clearly that zones of activity, apparently closely related and much larger than single plages existed for long intervals of time. For example, the significant increases in solar activity in February, May, and October of 1965 occurred in a ‘family’ of calcium plages apparently related through similarities of position and strong radio emission.The members of ‘families’ of centers of activity are found at systematically changing longitudes. For some ‘families’ the change of longitude appears to be primarily a consequence of differential rotation; for others, the pattern of formation of active centers dominates.According to the data for 1962–66 a meaningful study of the development of a center of activity may require consideration not only of the past history of the zone of the Sun in which it occurs but also of the zone approximately 180° away on the opposite hemisphere.


2020 ◽  
Vol 633 ◽  
pp. A83
Author(s):  
J. Becker Tjus ◽  
P. Desiati ◽  
N. Döpper ◽  
H. Fichtner ◽  
J. Kleimann ◽  
...  

The cosmic-ray Sun shadow, which is caused by high-energy charged cosmic rays being blocked and deflected by the Sun and its magnetic field, has been observed by various experiments, such as Argo-YBJ, Tibet, HAWC, and IceCube. Most notably, the shadow’s size and depth was recently shown to correlate with the 11-year solar cycle. The interpretation of such measurements, which help to bridge the gap between solar physics and high-energy particle astrophysics, requires a solid theoretical understanding of cosmic-ray propagation in the coronal magnetic field. It is the aim of this paper to establish theoretical predictions for the cosmic-ray Sun shadow in order to identify observables that can be used to study this link in more detail. To determine the cosmic-ray Sun shadow, we numerically compute trajectories of charged cosmic rays in the energy range of 5−316 TeV for five different mass numbers. We present and analyze the resulting shadow images for protons and iron, as well as for typically measured cosmic-ray compositions. We confirm the observationally established correlation between the magnitude of the shadowing effect and both the mean sunspot number and the polarity of the magnetic field during the solar cycle. We also show that during low solar activity, the Sun’s shadow behaves similarly to that of a dipole, for which we find a non-monotonous dependence on energy. In particular, the shadow can become significantly more pronounced than the geometrical disk expected for a totally unmagnetized Sun. For times of high solar activity, we instead predict the shadow to depend monotonously on energy and to be generally weaker than the geometrical shadow for all tested energies. These effects should become visible in energy-resolved measurements of the Sun shadow, and may in the future become an independent measure for the level of disorder in the solar magnetic field.


1990 ◽  
Vol 140 ◽  
pp. 159-162
Author(s):  
V.G. Berman ◽  
L.S. Marochnik ◽  
Yu.N. Mishurov ◽  
A.A. Suchkov

We show that large–scale motions of the interstellar gas, such as those associated with galactic density waves, easily develop, over a wide range of scales, shocks and discontinuities which are expected to generate turbulence. The latter is supposed to evoke diffusion of magnetic fields and cosmic rays on scales down to a few parsecs. We suggest that these processes may be of major importance in discussions of interconnections between the observed radio emission of the disks of spiral galaxies and the gas density distribution within them. In particular, we predict that the density of cosmic rays and magnetic field energy must be much less contrasted (on scales of ~1 pc and up to the scales of galactic shocks) than the gas density, hence the synchrotron radio emission is not as contrasted as is predicted under the hypothesis of a fully frozen-in magnetic field.


2002 ◽  
Vol 12 ◽  
pp. 371-377
Author(s):  
Jingxiu Wang

AbstractThere should be a driving layer on the Sun, in which the interaction between magnetic field and plasma motion would provide enough magnetic energy and necessary topology for the explosion of solar activity in the corona.Although the exact location of the driving layer is not known, phenomenologically, the photosphere is acting, in many aspects, as the driving layer. Vector magnetic field measurements on the photosphere are greatly needed in clarifying the nature of the driving.Two elementary processes, flux emergence and cancellation, andone basic structure, magnetic interface between topology-independent magnetic loops, are key elements in the driving.


Sign in / Sign up

Export Citation Format

Share Document