scholarly journals Local starbursts seen when the Universe was 2–4 Gyr old

2009 ◽  
Vol 5 (S266) ◽  
pp. 499-499
Author(s):  
S. M. Petty ◽  
D. F. de Mello ◽  
J. P. Gardner ◽  
J. S. Gallagher

AbstractWe explore the multiwavelength properties of three nearby starburst galaxies: NGC 3079, NGC 7673, and Mrk 08. We established that each of these galaxies has similar rest-frame far-ultraviolet (FUV) morphologies as Lyman-break galaxies (LBGs) at z ~ 1.5 and 4, when the age of the Universe was ~ 4.3 and ~ 1.6 Gyr, respectively. LBGs are at an important stage in galaxy evolution when the Universe had a peak in the star-formation-rate density. Many LBGs are primarily composed of star-forming clumps, i.e., stellar clusters, with a significant lack of older stellar populations. Here, we present the comparison of the spectral-energy distributions (SEDs) of three nearby starburst galaxies with those of typical LBGs. From our nearby sample, each object has been artificially redshifted to observe what the galaxies would look like at z ~ 1 to 4 in the rest-frame FUV. NGC 3079 is an edge-on Seyfert 2 galaxy. It has a bright bulge and is interacting with two other galaxies, with extended Hi only along NGC 3079. The redshifting process changes its appearance, so that at high z it looks like a chain galaxy with multiple knots of star formation and no bulge. NGC 7673 has extended Hi and the star formation is mostly within the inner optical region in the multiple star-forming clumps defining the galaxy morphology. In the FUV, the galaxy looks highly compact with little detail resolved. As it is artificially redshifted, the galaxy continues to look more spherical. Mrk 8 is a merging pair, with the two galaxies observable in the visible spectrum. It is classified as a Wolf–Rayet galaxy, which suggests a very young burst, and is composed of several large star-forming regions. The FUV image does not resolve the separate galaxies, and the appearance remains similar for each redshift. We use the Gini coefficient, M20, and the Sérsic index to quantify the morphologies. The SEDs of the objects have similarities with LBG stellar population models. Because these local galaxies can be studied in more detail, they act as a bridge between nearby observations of starburst galaxies and high-z starburst galaxies such as LBGs.

2020 ◽  
Vol 634 ◽  
pp. A97 ◽  
Author(s):  
Y. Khusanova ◽  
O. Le Fèvre ◽  
P. Cassata ◽  
O. Cucciati ◽  
B. C. Lemaux ◽  
...  

Context. The star formation rate density (SFRD) evolution presents an area of great interest in the studies of galaxy evolution and reionization. The current constraints of SFRD at z >  5 are based on the rest-frame UV luminosity functions with the data from photometric surveys. The VIMOS UltraDeep Survey (VUDS) was designed to observe galaxies at redshifts up to ∼6 and opened a window for measuring SFRD at z >  5 from a spectroscopic sample with a well-controlled selection function. Aims. We establish a robust statistical description of the star-forming galaxy population at the end of cosmic HI reionization (5.0 ≤ z ≤ 6.6) from a large sample of 49 galaxies with spectroscopically confirmed redshifts. We determine the rest-frame UV and Lyα luminosity functions and use them to calculate SFRD at the median redshift of our sample z = 5.6. Methods. We selected a sample of galaxies at 5.0 ≤ zspec ≤ 6.6 from the VUDS. We cleaned our sample from low redshift interlopers using ancillary photometric data. We identified galaxies with Lyα either in absorption or in emission, at variance with most spectroscopic samples in the literature where Lyα emitters (LAE) dominate. We determined luminosity functions using the 1/Vmax method. Results. The galaxies in this redshift range exhibit a large range in their properties. A fraction of our sample shows strong Lyα emission, while another fraction shows Lyα in absorption. UV-continuum slopes vary with luminosity, with a large dispersion. We find that star-forming galaxies at these redshifts are distributed along the main sequence in the stellar mass vs. SFR plane, described with a slope α = 0.85 ± 0.05. We report a flat evolution of the specific SFR compared to lower redshift measurements. We find that the UV luminosity function is best reproduced by a double power law, while a fit with a Schechter function is only marginally inferior. The Lyα luminosity function is best fitted with a Schechter function. We derive a logSFRDUV(M⊙ yr−1 Mpc−3) = −1.45+0.06−0.08 and logSFRDLyα(M⊙ yr−1 Mpc−3) = −1.40+0.07−0.08. The SFRD derived from the Lyα luminosity function is in excellent agreement with the UV-derived SFRD after correcting for IGM absorption. Conclusions. Our new SFRD measurements at a mean redshift of z = 5.6 are ∼0.2 dex above the mean SFRD reported in Madau & Dickinson (2014, ARA&A, 52, 415), but in excellent agreement with results from Bouwens et al. (2015a, ApJ, 803, 34). These measurements confirm the steep decline of the SFRD at z >  2. The bright end of the Lyα luminosity function has a high number density, indicating a significant star formation activity concentrated in the brightest LAE at these redshifts. LAE with equivalent width EW > 25 Å contribute to about 75% of the total UV-derived SFRD. While our analysis favors low dust content in 5.0 <  z <  6.6, uncertainties on the dust extinction correction and associated degeneracy in spectral fitting will remain an issue, when estimating the total SFRD until future surveys extending spectroscopy to the NIR rest-frame spectral domain, such as with JWST.


2019 ◽  
Vol 631 ◽  
pp. A156 ◽  
Author(s):  
L. A. Díaz-García ◽  
A. J. Cenarro ◽  
C. López-Sanjuan ◽  
I. Ferreras ◽  
M. Cerviño ◽  
...  

Aims. Our aim is to determine the distribution of stellar population parameters (extinction, age, metallicity, and star formation rates) of quiescent galaxies within the rest-frame stellar mass–colour diagrams and UVJ colour–colour diagrams corrected for extinction up to z ∼ 1. These novel diagrams reduce the contamination in samples of quiescent galaxies owing to dust-reddened galaxies, and they provide useful constraints on stellar population parameters only using rest-frame colours and/or stellar mass. Methods. We set constraints on the stellar population parameters of quiescent galaxies combining the ALHAMBRA multi-filter photo-spectra with our fitting code for spectral energy distribution, MUlti-Filter FITting (MUFFIT), making use of composite stellar population models based on two independent sets of simple stellar population (SSP) models. The extinction obtained by MUFFIT allowed us to remove dusty star-forming (DSF) galaxies from the sample of red UVJ galaxies. The distributions of stellar population parameters across these rest-frame diagrams are revealed after the dust correction and are fitted by LOESS, a bi-dimensional and locally weighted regression method, to reduce uncertainty effects. Results. Quiescent galaxy samples defined via classical UVJ diagrams are typically contaminated by a ∼20% fraction of DSF galaxies. A significant part of the galaxies in the green valley are actually obscured star-forming galaxies (∼30–65%). Consequently, the transition of galaxies from the blue cloud to the red sequence, and hence the related mechanisms for quenching, seems to be much more efficient and faster than previously reported. The rest-frame stellar mass–colour and UVJ colour–colour diagrams are useful for constraining the age, metallicity, extinction, and star formation rate of quiescent galaxies by only their redshift, rest-frame colours, and/or stellar mass. Dust correction plays an important role in understanding how quiescent galaxies are distributed in these diagrams and is key to performing a pure selection of quiescent galaxies via intrinsic colours.


2019 ◽  
Vol 15 (S352) ◽  
pp. 342-346
Author(s):  
Andrew J. Bunker

AbstractI present an overview of the JWST Advanced Deep Extragalactic Survey (JADES), a joint program of the JWST/NIRCam and NIRSpec Guaranteed Time Observations (GTO) teams involving 950 hours of observation. We will target two well-studied fields with excellent supporting data (e.g., from HST-CANDELS): GOODS-North and South, including the Ultra Deep Field. The science goal of JADES is to chart galaxy evolution at z > 2, and potentially out to z > 10, using the rest-frame optical and near-IR though observations from ≍ 1–5μm. Multi-colour NIRCam imaging with 9 filters will enable photometric redshifts and the application of the Lyman break technique out to unprecedented distances. NIRSpec spectroscopy (with spectral resolving powers of R = 100, 1000 & 2700) will measure secure spectroscopic redshifts of the photometrically-selected population, as well as stellar continuum slopes in the UV rest-frame, and hence study the role of dust, stellar population age, and other effects. Measuring emission lines can constrain the dust extinction, star formation rates, metallicity, chemical abundances, ionization and excitation mechanism in high redshift galaxies. Coupling NIRCam and NIRSpec observations will determine stellar populations (age, star formation histories, abundances) of galaxies and provide the information to correct their broad-band spectral energy distribution for likely line contamination. Potentially we can search for signatures of Population III stars such as HeII. We can address the contribution of star-forming galaxies at z > 7 to reionization by determining the faint end slope of the luminosity function and investigating the escape fraction of ionizing photons by comparing the UV stellar continuum with the Balmer-line fluxes.


2019 ◽  
Vol 492 (1) ◽  
pp. 1492-1512
Author(s):  
S Gillman ◽  
A L Tiley ◽  
A M Swinbank ◽  
C M Harrison ◽  
Ian Smail ◽  
...  

ABSTRACT We present an analysis of the gas dynamics of star-forming galaxies at z ∼ 1.5 using data from the KMOS Galaxy Evolution Survey. We quantify the morphology of the galaxies using HSTcandels imaging parametrically and non-parametrically. We combine the H α dynamics from KMOS with the high-resolution imaging to derive the relation between stellar mass (M*) and stellar specific angular momentum (j*). We show that high-redshift star-forming galaxies at z ∼ 1.5 follow a power-law trend in specific stellar angular momentum with stellar mass similar to that of local late-type galaxies of the form j*  ∝  M$_*^{0.53\, \pm \, 0.10}$. The highest specific angular momentum galaxies are mostly disc-like, although generally both peculiar morphologies and disc-like systems are found across the sequence of specific angular momentum at a fixed stellar mass. We explore the scatter within the j* – M* plane and its correlation with both the integrated dynamical properties of a galaxy (e.g. velocity dispersion, Toomre Qg, H α star formation rate surface density ΣSFR) and its parametrized rest-frame UV / optical morphology (e.g. Sérsic index, bulge to total ratio, clumpiness, asymmetry, and concentration). We establish that the position in the j* – M* plane is strongly correlated with the star-formation surface density and the clumpiness of the stellar light distribution. Galaxies with peculiar rest-frame UV / optical morphologies have comparable specific angular momentum to disc- dominated galaxies of the same stellar mass, but are clumpier and have higher star formation rate surface densities. We propose that the peculiar morphologies in high-redshift systems are driven by higher star formation rate surface densities and higher gas fractions leading to a more clumpy interstellar medium.


2020 ◽  
Vol 499 (4) ◽  
pp. 4940-4960
Author(s):  
Henry R M Zovaro ◽  
Robert Sharp ◽  
Nicole P H Nesvadba ◽  
Lisa Kewley ◽  
Ralph Sutherland ◽  
...  

ABSTRACT Local examples of jet-induced star formation lend valuable insight into its significance in galaxy evolution and can provide important observational constraints for theoretical models of positive feedback. Using optical integral field spectroscopy, we present an analysis of the ISM conditions in Minkowski’s object (z = 0.0189), a peculiar star-forming dwarf galaxy located in the path of a radio jet from the galaxy NGC 541. Full spectral fitting with ppxf indicates that Minkowski’s object primarily consists of a young stellar population $\sim \! 10\, \rm Myr$ old, confirming that the bulk of the object’s stellar mass formed during a recent jet interaction. Minkowski’s object exhibits line ratios largely consistent with star formation, although there is evidence for a low level ($\lesssim \! 15 \, \rm per \, cent$) of contamination from a non-stellar ionizing source. Strong-line diagnostics reveal a significant variation in the gas-phase metallicity within the object, with $\log \left(\rm O / H \right) + 12$ varying by $\sim \! 0.5\, \rm dex$, which cannot be explained by in-situ star formation, an enriched outflow from the jet, or enrichment of gas in the stellar bridge between NGC 541 and NGC 545/547. We hypothesize that Minkowski’s object either (i) was formed as a result of jet-induced star formation in pre-existing gas clumps in the stellar bridge, or (ii) is a gas-rich dwarf galaxy that is experiencing an elevation in its star formation rate due to a jet interaction, and will eventually redden and fade, becoming an ultradiffuse galaxy as it is processed by the cluster.


2009 ◽  
Vol 5 (S266) ◽  
pp. 549-549
Author(s):  
Elysse N. Voyer ◽  
Duilia F. de Mello ◽  
Jonathan P. Gardner ◽  
Brian Siana ◽  
Harry Teplitz

AbstractStarburst galaxies trace the star-formation history of the Universe throughout cosmological time. Several studies have shown that the star-formation-rate density of the Universe begins to steadily decline after the Universe had aged ~ 5.8 Gyr (redshifts z ~ 1). However, we do not yet fully understand the mechanism behind this shift in star formation at intermediate z. One possibility is that during this epoch galaxies underwent ‘downsizing,’ a shift in star formation being dominated by high- to lower-mass galaxies. Rest-frame ultraviolet (UV) observations of starburst galaxies reveal regions of young stellar clusters where massive O and B stars dominate the luminosity. Observations in the FUV (~ 1500 Å) can be used to detect starburst galaxies at z < 1 because the bright end of the rest-frame FUV spectrum is not redshifted much, and is observable in the FUV filter. Alternatively, the rest-frame FUV light from starburst galaxies at higher redshifts is shifted to longer wavelengths and must be observed in redder filters. We present a study of the starburst population at intermediate z from FUV data taken with Hubble's Solar Blind Channel (SBC) of the Advanced Camera for Surveys (ACS). The number counts of FUV galaxies as a function of magnitude provide a direct statistical measure of the density and evolution of starbursts, and subsequently of the stellar clusters formed within these galaxies' environments. We present a comparison between the FUV starburst-galaxy counts at this epoch, and the local FUV counts of starbursts observed with GALEX.


2021 ◽  
Vol 923 (2) ◽  
pp. 235
Author(s):  
Jiwon Chung ◽  
Suk Kim ◽  
Soo-Chang Rey ◽  
Youngdae Lee

Abstract It has been proposed that the filament environment is closely connected to the pre-processing of galaxies, where their properties may have been changed by environmental effects in the filament before they fell into the galaxy cluster. We present the chemical properties of star-forming dwarf galaxies (SFDGs) in five filamentary structures (Virgo III, Leo Minor, Leo II A, Leo II B, and Canes Venatici) around the Virgo cluster using the Sloan Digital Sky Survey optical spectroscopic data and Galaxy Evolution Explorer ultraviolet photometric data. We investigate the relationship between stellar mass, gas-phase metallicity, and specific star formation rate (sSFR) of the SFDGs in the Virgo filaments in comparison to those in the Virgo cluster and field. We find that, at a given stellar mass, SFDGs in the Virgo filaments show lower metallicity and higher sSFR than those in the Virgo cluster on average. We observe that SFDGs in the Virgo III filament show enhanced metallicities and suppressed star formation activities comparable to those in the Virgo cluster, whereas SFDGs in the other four filaments exhibit similar properties to the field counterparts. Moreover, about half of the galaxies in the Virgo III filament are found to be morphologically transitional dwarf galaxies that are supposed to be on the way to transforming into quiescent dwarf early-type galaxies. Based on the analysis of the galaxy perturbation parameter, we propose that the local environment represented by the galaxy interactions might be responsible for the contrasting features in chemical pre-processing found in the Virgo filaments.


2020 ◽  
Vol 500 (3) ◽  
pp. 3240-3253
Author(s):  
Amanda R Lopes ◽  
Eduardo Telles ◽  
Jorge Melnick

ABSTRACT We discuss the implications of assuming different star formation histories (SFH) in the relation between star formation rate (SFR) and mass derived by the spectral energy distribution fitting (SED). Our analysis focuses on a sample of H ii galaxies, dwarf starburst galaxies spectroscopically selected through their strong narrow emission lines in SDSS DR13 at z &lt; 0.4, cross-matched with photometric catalogues from GALEX, SDSS, UKIDSS, and WISE. We modelled and fitted the SEDs with the code CIGALE adopting different descriptions of SFH. By adding information from different independent studies, we find that H ii galaxies are best described by episodic SFHs including an old (10 Gyr), an intermediate age (100−1000 Myr) and a recent population with ages &lt; 10 Myr. H ii galaxies agree with the SFR−M* relation from local star-forming galaxies, and only lie above such relation when the current SFR is adopted as opposed to the average over the entire SFH. The SFR−M* demonstrated not to be a good tool to provide additional information about the SFH of H ii galaxies, as different SFH present a similar behaviour with a spread of &lt;0.1 dex.


2018 ◽  
Vol 614 ◽  
pp. A33 ◽  
Author(s):  
D. Donevski ◽  
V. Buat ◽  
F. Boone ◽  
C. Pappalardo ◽  
M. Bethermin ◽  
...  

Context. Over the last decade a large number of dusty star-forming galaxies has been discovered up to redshift z = 2 − 3 and recent studies have attempted to push the highly confused Herschel SPIRE surveys beyond that distance. To search for z ≥ 4 galaxies they often consider the sources with fluxes rising from 250 μm to 500 μm (so-called “500 μm-risers”). Herschel surveys offer a unique opportunity to efficiently select a large number of these rare objects, and thus gain insight into the prodigious star-forming activity that takes place in the very distant Universe. Aims. We aim to implement a novel method to obtain a statistical sample of 500 μm-risers and fully evaluate our selection inspecting different models of galaxy evolution. Methods. We consider one of the largest and deepest Herschel surveys, the Herschel Virgo Cluster Survey. We develop a novel selection algorithm which links the source extraction and spectral energy distribution fitting. To fully quantify selection biases we make end-to-end simulations including clustering and lensing. Results. We select 133 500 μm-risers over 55 deg2, imposing the criteria: S500 > S350 > S250, S250 > 13.2 mJy and S500 > 30 mJy. Differential number counts are in fairly good agreement with models, displaying a better match than other existing samples. The estimated fraction of strongly lensed sources is 24+6-5% based on models. Conclusions. We present the faintest sample of 500 μm-risers down to S250 = 13.2 mJy. We show that noise and strong lensing have an important impact on measured counts and redshift distribution of selected sources. We estimate the flux-corrected star formation rate density at 4 < z < 5 with the 500 μm-risers and find it to be close to the total value measured in far-infrared. This indicates that colour selection is not a limiting effect to search for the most massive, dusty z > 4 sources.


2020 ◽  
Vol 644 ◽  
pp. A144
Author(s):  
D. Donevski ◽  
A. Lapi ◽  
K. Małek ◽  
D. Liu ◽  
C. Gómez-Guijarro ◽  
...  

The dust-to-stellar mass ratio (Mdust/M⋆) is a crucial, albeit poorly constrained, parameter for improving our understanding of the complex physical processes involved in the production of dust, metals, and stars in galaxy evolution. In this work, we explore trends of Mdust/M⋆ with different physical parameters and using observations of 300 massive dusty star-forming galaxies detected with ALMA up to z ≈ 5. Additionally, we interpret our findings with different models of dusty galaxy formation. We find that Mdust/M⋆ evolves with redshift, stellar mass, specific star formation rates, and integrated dust size, but that evolution is different for main-sequence galaxies than it is for starburst galaxies. In both galaxy populations, Mdust/M⋆ increases until z ∼ 2, followed by a roughly flat trend towards higher redshifts, suggesting efficient dust growth in the distant universe. We confirm that the inverse relation between Mdust/M⋆ and M⋆ holds up to z ≈ 5 and can be interpreted as an evolutionary transition from early to late starburst phases. We demonstrate that the Mdust/M⋆ in starbursts reflects the increase in molecular gas fraction with redshift and attains the highest values for sources with the most compact dusty star formation. State-of-the-art cosmological simulations that include self-consistent dust growth have the capacity to broadly reproduce the evolution of Mdust/M⋆ in main-sequence galaxies, but underestimating it in starbursts. The latter is found to be linked to lower gas-phase metallicities and longer dust-growth timescales relative to observations. The results of phenomenological models based on the main-sequence and starburst dichotomy as well as analytical models that include recipes for rapid metal enrichment are consistent with our observations. Therefore, our results strongly suggest that high Mdust/M⋆ is due to rapid dust grain growth in the metal-enriched interstellar medium. This work highlights the multi-fold benefits of using Mdust/M⋆ as a diagnostic tool for: (1) disentangling main-sequence and starburst galaxies up to z ∼ 5; (2) probing the evolutionary phase of massive objects; and (3) refining the treatment of the dust life cycle in simulations.


Sign in / Sign up

Export Citation Format

Share Document