scholarly journals Bridging galactic star formation from intermediate to local epochs

2009 ◽  
Vol 5 (S266) ◽  
pp. 549-549
Author(s):  
Elysse N. Voyer ◽  
Duilia F. de Mello ◽  
Jonathan P. Gardner ◽  
Brian Siana ◽  
Harry Teplitz

AbstractStarburst galaxies trace the star-formation history of the Universe throughout cosmological time. Several studies have shown that the star-formation-rate density of the Universe begins to steadily decline after the Universe had aged ~ 5.8 Gyr (redshifts z ~ 1). However, we do not yet fully understand the mechanism behind this shift in star formation at intermediate z. One possibility is that during this epoch galaxies underwent ‘downsizing,’ a shift in star formation being dominated by high- to lower-mass galaxies. Rest-frame ultraviolet (UV) observations of starburst galaxies reveal regions of young stellar clusters where massive O and B stars dominate the luminosity. Observations in the FUV (~ 1500 Å) can be used to detect starburst galaxies at z < 1 because the bright end of the rest-frame FUV spectrum is not redshifted much, and is observable in the FUV filter. Alternatively, the rest-frame FUV light from starburst galaxies at higher redshifts is shifted to longer wavelengths and must be observed in redder filters. We present a study of the starburst population at intermediate z from FUV data taken with Hubble's Solar Blind Channel (SBC) of the Advanced Camera for Surveys (ACS). The number counts of FUV galaxies as a function of magnitude provide a direct statistical measure of the density and evolution of starbursts, and subsequently of the stellar clusters formed within these galaxies' environments. We present a comparison between the FUV starburst-galaxy counts at this epoch, and the local FUV counts of starbursts observed with GALEX.

2009 ◽  
Vol 5 (S266) ◽  
pp. 499-499
Author(s):  
S. M. Petty ◽  
D. F. de Mello ◽  
J. P. Gardner ◽  
J. S. Gallagher

AbstractWe explore the multiwavelength properties of three nearby starburst galaxies: NGC 3079, NGC 7673, and Mrk 08. We established that each of these galaxies has similar rest-frame far-ultraviolet (FUV) morphologies as Lyman-break galaxies (LBGs) at z ~ 1.5 and 4, when the age of the Universe was ~ 4.3 and ~ 1.6 Gyr, respectively. LBGs are at an important stage in galaxy evolution when the Universe had a peak in the star-formation-rate density. Many LBGs are primarily composed of star-forming clumps, i.e., stellar clusters, with a significant lack of older stellar populations. Here, we present the comparison of the spectral-energy distributions (SEDs) of three nearby starburst galaxies with those of typical LBGs. From our nearby sample, each object has been artificially redshifted to observe what the galaxies would look like at z ~ 1 to 4 in the rest-frame FUV. NGC 3079 is an edge-on Seyfert 2 galaxy. It has a bright bulge and is interacting with two other galaxies, with extended Hi only along NGC 3079. The redshifting process changes its appearance, so that at high z it looks like a chain galaxy with multiple knots of star formation and no bulge. NGC 7673 has extended Hi and the star formation is mostly within the inner optical region in the multiple star-forming clumps defining the galaxy morphology. In the FUV, the galaxy looks highly compact with little detail resolved. As it is artificially redshifted, the galaxy continues to look more spherical. Mrk 8 is a merging pair, with the two galaxies observable in the visible spectrum. It is classified as a Wolf–Rayet galaxy, which suggests a very young burst, and is composed of several large star-forming regions. The FUV image does not resolve the separate galaxies, and the appearance remains similar for each redshift. We use the Gini coefficient, M20, and the Sérsic index to quantify the morphologies. The SEDs of the objects have similarities with LBG stellar population models. Because these local galaxies can be studied in more detail, they act as a bridge between nearby observations of starburst galaxies and high-z starburst galaxies such as LBGs.


2020 ◽  
Vol 58 (1) ◽  
pp. 363-406 ◽  
Author(s):  
Céline Péroux ◽  
J. Christopher Howk

Characterizing the relationship between stars, gas, and metals in galaxies is a critical component of understanding the cosmic baryon cycle. We compile contemporary censuses of the baryons in collapsed structures and their chemical makeup and dust content. We show the following: ▪  The [Formula: see text] mass density of the Universe is well determined to redshifts [Formula: see text] and shows minor evolution with time. New observations of molecular hydrogen reveal its evolution mirrors that of the global star-formation rate density, implying a universal cosmic molecular gas depletion timescale. The low-redshift decline of the star-formation history is thus driven by the lack of molecular gas supply due to a drop in net accretion rate related to the decreased growth of dark matter halos. ▪  The metal mass density in cold gas ([Formula: see text] K) contains virtually all the metals produced by stars for [Formula: see text]. At lower redshifts, the contributors to the total amount of metals are more diverse; at [Formula: see text], most of the observed metals are bound in stars. Overall, there is little evidence for a “missing metals problem” in modern censuses. ▪  We characterize the dust content of neutral gas over cosmic time, finding the dust-to-gas and dust-to-metals ratios fall with decreasing metallicity. We calculate the cosmological dust mass density in the neutral gas up to [Formula: see text]. There is good agreement between multiple tracers of the dust content of the Universe.


1999 ◽  
Vol 190 ◽  
pp. 8-14
Author(s):  
F.D.A. Hartwick

We use observations and evolutionary models of local objects to interpret a recent determination of the star-formation history of the universe. By fitting the global star-formation rate, the model predicts the ratio of spheroid to disk mass of ~1, an intergalactic medium (IGM) whose mass is ~2.3 times the mass in stars, and whose metallicity is ~0.1 Z⊙.


2006 ◽  
Vol 2 (14) ◽  
pp. 248-248
Author(s):  
Andrew J. Bunker ◽  
Elizabeth R. Stanway ◽  
Laurence P. Eyles ◽  
Richard S. Ellis ◽  
Richard G. McMahon ◽  
...  

AbstractWe discuss the selection of star-forming galaxies at z≃6 through the Lyman-break technique. Spitzer imaging implies many of these contain older stellar populations (>200Myr) which produce detectable Balmer breaks. The ages and stellar masses (∼1010M⊙) imply that the star formation rate density at earlier epochs may have been significantly higher than at z≃6, and might have played a key role in re-ionizing the universe.


2006 ◽  
Vol 2 (S235) ◽  
pp. 394-394
Author(s):  
Andrew Bunker ◽  
Michelle Doherty ◽  
Rob Sharp ◽  
Ian Parry ◽  
Gavin Dalton ◽  
...  

AbstractWe have demonstrated the first near-infrared multi-object spectrograph, CIRPASS, on the 4.2-m William Herschel Telescope (WHT) and the 3.9-m Anglo-Australian Telescope. We have conducted an Hα survey of 38 0.77 < z < 1 galaxies over ~100 arcmin2 of the Hubble Deep Field North and Flanking Fields, to determine star formation rates (SFRs) using CIRPASS on the WHT. This represents the first successful application of this technique to observing high redshift galaxies (Doherty et al. 2004). Stacking the spectra in the rest-frame, we find a lower limit (uncorrected for dust reddening) on the star formation rate density at redshift z = 1 of 0.04 M⊙ yr−1 Mpc−3 (Doherty et al. 2006). This implies rapid evolution in the star formation rate density from z = 0 to z = 1 which is proportional to (1 + z)3.1. We intend to extend our work with FMOS on Subaru as the evolSMURF project (the Evolution of Star-formation and Metallicity in the Universe at high Redshift with FMOS). This will represent nearly two orders-of-magnitude improvement on previous work, and for the first time will provide a sample of sufficient size to measure accurately the Hα luminosity function, and so determine the global star formation rate using the same indicator as used in local surveys. Using [O II]3727 Å, Hβ, [O III] 5007 Å and Hα redshifted into the z, J & H bands, we can chart the star formation history over 70% of the age of the Universe, affording complete coverage up to z = 1.6 with the same well-understood diagnostics. The line ratios will also allow the extinction and metallicity to be measured at z>1. This will resolve one of the long-standing puzzles in extragalactic astrophysics – the true evolution of the Madau-Lilly diagram of star formation density.


2018 ◽  
Vol 614 ◽  
pp. A32 ◽  
Author(s):  
J. Weaver ◽  
B. Husemann ◽  
H. Kuntschner ◽  
I. Martín-Navarro ◽  
F. Bournaud ◽  
...  

Context. The merging of galaxies is one key aspect in our favourite hierarchical ΛCDM Universe and is an important channel leading to massive quiescent elliptical galaxies. Understanding this complex transformational process is ongoing. Aims. We aim to study NGC 7252, which is one of the nearest major-merger galaxy remnants, observed ~1 Gyr after the collision of presumably two gas-rich disc galaxies. It is therefore an ideal laboratory to study the processes inherent to the transformation of disc galaxies to ellipticals. Methods. We obtained wide-field IFU spectroscopy with the VLT-VIMOS integral-field spectrograph covering the central 50′′ × 50′′ of NGC 7252 to map the stellar and ionised gas kinematics, and the distribution and conditions of the ionised gas, revealing the extent of ongoing star formation and recent star formation history. Results. Contrary to previous studies, we find the inner gas disc not to be counter-rotating with respect to the stars. In addition, the stellar kinematics appear complex with a clear indication of a prolate-like rotation component which suggests a polar merger configuration. The ongoing star formation rate is 2.2 ± 0.6 M⊙ yr−1 and implies a typical depletion time of ~2 Gyr given the molecular gas content. Furthermore, the spatially resolved star formation history suggests a slight radial dependence, moving outwards at later times. We confirm a large AGN-ionised gas cloud previously discovered ~5 kpc south of the nucleus, and find a higher ionisation state of the ionised gas at the galaxy centre relative to the surrounding gas disc. Although the higher ionisation towards the centre is potentially degenerate within the central star forming ring, it may be associated with a low-luminosity AGN. Conclusions. Although NGC 7252 has been classified as post-starburst galaxy at the centre, the elliptical-like major-merger remnant still appears very active. A central kpc-scale gas disc has presumably re-formed quickly within the last 100 Myr after final coalescence. The disc features ongoing star formation, implying Gyr long timescale to reach the red sequence through gas consumption alone. While NGC 7252 is useful to probe the transformation from discs to ellipticals, it is not well-suited to study the transformation from blue to red at this point.


2007 ◽  
Vol 3 (S245) ◽  
pp. 195-200
Author(s):  
S. Kaviraj ◽  
S. K. Yi ◽  
E. Gawiser ◽  
P. G. van Dokkum ◽  
S. Khochfar ◽  
...  

AbstractWe combine deep UBV RIzJK photometry from the MUSYC survey with redshifts from the COMBO-17 survey to study the rest-frame ultraviolet (UV) properties of 674 high-redshift (0.5 < z < 1) early-type galaxies, drawn from the Extended Chandra Deep Field South (E-CDFS). Galaxy morphologies are determined through visual inspection of Hubble Space Telescope (HST) images taken from the GEMS survey. We harness the sensitivity of the UV to young (<1 Gyrs old) stars to quantify the recent star formation history of the early-type population. We find compelling evidence that early-types of all luminosities form stars over the lifetime of the Universe, although the bulk of their star formation is already complete at high redshift. Luminous (−23 < M(V) < −20.5) early-types form 10-15 percent of their mass after z = 1, while their less luminous (M(V) > −20.5) counterparts form 30-60 percent of their mass in the same redshift range.


1999 ◽  
Vol 183 ◽  
pp. 145-150
Author(s):  
Tomonori Totani

Star formation history in galaxies is strongly correlated to their present-day colors and the Hubble sequence can be considered as a sequence of different star formation history. Therefore we can model the cosmic star formation history based on the colors of local galaxies, and comparison to direct observations of luminosity density evolution at high redshift gives a new test for the cosmological parameters which is insensitive to merger history of galaxies. The luminosity density evolution in 0 < z < 1 observed by the Canada-France Redshift Survey in three wavebands of 2800Å, 4400Å, and 1μm indicates that the Λ-dominated flat universe with λ0 ∼ 0.8 (> 0.53 at 95%CL) is strongly favored.The cosmic star formation rate (SFR) at z > 2 is also compared to the latest data of the Hubble Deep Field including new data which were not incorporated in the previous work of Totani, Yoshii, & Sato (1997), and our model of the luminosity density of spiral galaxies taking account of gas infall is consistent with the observations. Starbursts in elliptical galaxies, which are expected from the galactic wind model, however overproduce SFRs and hence they should be formed at z ≳ 5 or their UV emission has to be hidden by dust extinction. The amount of metals in galactic winds and escaping ionizing photons are enough to contaminate the Lyα forests or to reionize the universe.


Author(s):  
Takuya Hashimoto ◽  
Akio K Inoue ◽  
Ken Mawatari ◽  
Yoichi Tamura ◽  
Hiroshi Matsuo ◽  
...  

Abstract We present new ALMA observations and physical properties of a Lyman break galaxy at z = 7.15. Our target, B14-65666, has a bright ultra-violet (UV) absolute magnitude, MUV ≈ −22.4, and has been spectroscopically identified in Lyα with a small rest-frame equivalent width of ≈4 Å. A previous Hubble Space TElescope (HST) image has shown that the target is composed of two spatially separated clumps in the rest-frame UV. With ALMA, we have newly detected spatially resolved [O iii] 88 μm, [C ii] 158 μm, and their underlying dust continuum emission. In the whole system of B14-65666, the [O iii] and [C ii] lines have consistent redshifts of 7.1520 ± 0.0003, and the [O iii] luminosity, (34.4 ± 4.1) × 108 L⊙, is about three times higher than the [C ii] luminosity, (11.0 ± 1.4) × 108 L⊙. With our two continuum flux densities, the dust temperature is constrained to be Td ≈ 50–60 K under the assumption of a dust emissivity index of βd = 2.0–1.5, leading to a large total infrared luminosity of LTIR ≈ 1 × 1012 L⊙. Owing to our high spatial resolution data, we show that the [O iii] and [C ii] emission can be spatially decomposed into two clumps associated with the two rest-frame UV clumps whose spectra are kinematically separated by ≈200 km s−1. We also find these two clumps have comparable UV, infrared, [O iii], and [C ii] luminosities. Based on these results, we argue that B14-65666 is a starburst galaxy induced by a major merger. The merger interpretation is also supported by the large specific star formation rate (defined as the star formation rate per unit stellar mass), sSFR $= 260^{+119}_{-57}\:$Gyr−1, inferred from our SED fitting. Probably, a strong UV radiation field caused by intense star formation contributes to its high dust temperature and the [O iii]-to-[C ii] luminosity ratio.


2022 ◽  
Vol 924 (2) ◽  
pp. 76
Author(s):  
Hiddo S. B. Algera ◽  
Jacqueline A. Hodge ◽  
Dominik A. Riechers ◽  
Sarah K. Leslie ◽  
Ian Smail ◽  
...  

Abstract Radio free–free emission is considered to be one of the most reliable tracers of star formation in galaxies. However, as it constitutes the faintest part of the radio spectrum—being roughly an order of magnitude less luminous than radio synchrotron emission at the GHz frequencies typically targeted in radio surveys—the usage of free–free emission as a star formation rate tracer has mostly remained limited to the local universe. Here, we perform a multifrequency radio stacking analysis using deep Karl G. Jansky Very Large Array observations at 1.4, 3, 5, 10, and 34 GHz in the COSMOS and GOODS-North fields to probe free–free emission in typical galaxies at the peak of cosmic star formation. We find that z ∼ 0.5–3 star-forming galaxies exhibit radio emission at rest-frame frequencies of ∼65–90 GHz that is ∼1.5–2 times fainter than would be expected from a simple combination of free–free and synchrotron emission, as in the prototypical starburst galaxy M82. We interpret this as a deficit in high-frequency synchrotron emission, while the level of free–free emission is as expected from M82. We additionally provide the first constraints on the cosmic star formation history using free–free emission at 0.5 ≲ z ≲ 3, which are in good agreement with more established tracers at high redshift. In the future, deep multifrequency radio surveys will be crucial in order to accurately determine the shape of the radio spectrum of faint star-forming galaxies, and to further establish radio free–free emission as a tracer of high-redshift star formation.


Sign in / Sign up

Export Citation Format

Share Document