scholarly journals Simulations of Recoiling Massive Black Holes

2009 ◽  
Vol 5 (S267) ◽  
pp. 262-262
Author(s):  
Javiera Guedes ◽  
Piero Madau ◽  
Lucio Mayer ◽  
Michael Kuhlen ◽  
Jürg Diemand ◽  
...  

AbstractThe coalescence of black hole binaries is a significant source of gravitational wave radiation. The typically asymmetric nature of this emission, which carries linear momentum, can result in the recoil of the black hole remnant with velocities in the range 100 < Vrecoil < 3750 km s−1. The detectability of recoiling massive black holes (MBH) as off-nuclear QSOs is tightly connected with the properties of the host galaxy, which determine the MBH's orbit and fuel reservoir. We present the results of N-body simulations of recoiling MBHs in high-resolution, non-axisymmetric potentials. We find that if the recoil velocities are high enough to reach regions of the galaxy dominated by the generally triaxial dark matter distribution, the return time is significantly extended when compared to a spherical distribution. We also perform simulations of recoiling MBHs traveling in gas merger remnants, where large amounts of gas have been funneled to the central regions, In this case, the MBHs remain within R<1 kpc from the center of the host even for high recoil velocities (Vrecoil = 1200 km s−1) due to the compactness of the remnant galaxy's nuclear disk. We discuss the implications of both scenarios for detectability.

2019 ◽  
Vol 488 (3) ◽  
pp. 4042-4060 ◽  
Author(s):  
Stephen Thorp ◽  
Eli Chadwick ◽  
Alberto Sesana

ABSTRACT We compute the expected cosmic rates of tidal disruption events (TDEs) induced by individual massive black holes (MBHs) and by MBH binaries (MBHBs) – with a specific focus on the latter class – to explore the potential of TDEs to probe the cosmic population of sub-pc MBHBs. Rates are computed by combining MBH and MBHB population models derived from large cosmological simulations with estimates of the induced TDE rates for each class of objects. We construct empirical TDE spectra that fit a large number of observations in the optical, UV, and X-ray and consider their observability by current and future survey instruments. Consistent with results in the literature, and depending on the detailed assumption of the model, we find that LSST and Gaia in optical and eROSITA in X-ray will observe a total of 3000–6000, 80–180, and 600–900 TDEs per year, respectively. Depending on the survey, 1 to several per cent of these are prompted by MBHBs. In particular, both LSST and eROSITA are expected to see 150–450 MBHB-induced TDEs in their respective mission lifetimes, including 5–100 repeated flares. The latter provide an observational sample of binary candidates with relatively low contamination and have the potential of unveiling the sub-pc population of MBHBs in the mass range $10^5\lt M\lt 10^7\, \mathrm{M}_\odot$, thus informing future low-frequency gravitational wave observatories.


1998 ◽  
Vol 184 ◽  
pp. 377-384 ◽  
Author(s):  
H.C. Ford ◽  
Z.I. Tsvetanov ◽  
L. Ferrarese ◽  
W. Jaffe

After correcting spherical aberration in the Hubble Space Telescope in 1993, the central masses of galaxies can be measured with a resolution 5 to 10 times better than can be achieved at the best terrestrial sites. This improvement in resolution is decisive for detecting the gravitational signature of massive black holes in galaxy nuclei. The discovery of small (r ~ 100–200 pc) rotating gaseous and stellar disks in the centers of many early-type galaxies provides a new and efficient means for measuring the central potentials of galaxies. Concomitantly, VLBI observations of H2O masers in the nuclei of NGC 4258 and NGC 1068 revealed exquisite Keplerian rotation curves around massive black holes at radii as small as 0.1 pc. Recent terrestrial K-band measurements of the proper motions of stars in the cluster at the center of the galaxy provide irrefutable evidence for a black hole with a mass of 2.7 × 106M⊙. At the time of this symposium, the presence of central massive black holes has been established in 12 galaxies. The evidence suggests that there are massive black holes in the centers of all AGNs and in most, if not all, nucleated galaxies. The present data show at best a weak correlation between black hole mass and bulge luminosity.


2015 ◽  
Vol 11 (S319) ◽  
pp. 80-83 ◽  
Author(s):  
Xue-Bing Wu ◽  
Feige Wang ◽  
Xiaohui Fan ◽  
Weimin Yi ◽  
Wenwen Zuo ◽  
...  

AbstractThe existence of black holes with masses of about one billion solar masses in quasars at redshifts z > 6 presents significant challenges to theories of the formation and growth of black holes and the black hole/galaxy co-evolution in the early Universe. Here we report a recent discovery of an ultra-luminous quasar at redshift z = 6.30, which has an observed optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. With near-infrared spectroscopy, we obtain a black hole mass of about 12 billion solar masses, which is well consistent with the mass derived by assuming an Eddington-limited accretion. This ultra-luminous quasar with at z > 6 provides a unique laboratory to the study of the mass assembly and galaxy formation around the most massive black holes at cosmic dawn. It raises further challenges to the black hole/galaxy co-evolution in the epoch of cosmic reionization because the black hole needs to grow much faster than the host galaxy.


2009 ◽  
Vol 5 (S267) ◽  
pp. 26-33 ◽  
Author(s):  
Marta Volonteri

AbstractMassive black holes (MBHs) are nowadays believed to reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than their hosts (~ 0.1%), are linked to the evolution of galactic structure. When did it all start? In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation have to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for “seed” black holes that are likely to take place at early cosmic epochs, and possible observational tests of these scenarios.


Author(s):  
Jeremiah P. Ostriker ◽  
Luca Ciotti

There is abundant evidence that heating processes in the central regions of elliptical galaxies have both prevented large–scale cooling flows and assisted in the expulsion of metal rich gas. We now know that each such spheroidal system harbours in its core a massive black hole weighing ca. 0.13% of the mass in stars and also know that energy was emitted by each of these black holes with an efficiency exceeding 10% of its rest mass. Since, if only 0.5% of that radiant energy were intercepted by the ambient gas, its thermal state would be drastically altered, it is worth examining in detail the interaction between the out–flowing radiation and the equilibrium or inflowing gas. On the basis of detailed hydrodynamic computations we find that relaxation oscillations are to be expected with the radiative feedback quite capable of regulating both the growth of the central black hole and also the density and thermal state of the gas in the galaxy. Mechanical input of energy by jets may assist or dominate over these radiative effects. We propose specific observational tests to identify systems which have experienced strong bursts of radiative heating from their central black holes.


Science ◽  
2019 ◽  
Vol 363 (6426) ◽  
pp. 531-534 ◽  
Author(s):  
Dheeraj R. Pasham ◽  
Ronald A. Remillard ◽  
P. Chris Fragile ◽  
Alessia Franchini ◽  
Nicholas C. Stone ◽  
...  

The tidal forces close to massive black holes can rip apart stars that come too close to them. As the resulting stellar debris spirals toward the black hole, the debris heats up and emits x-rays. We report observations of a stable 131-second x-ray quasi-periodic oscillation from the tidal disruption event ASASSN-14li. Assuming the black hole mass indicated by host galaxy scaling relations, these observations imply that the periodicity originates from close to the event horizon and that the black hole is rapidly spinning. Our findings demonstrate that tidal disruption events can generate quasi-periodic oscillations that encode information about the physical properties of their black holes.


2009 ◽  
Vol 5 (S267) ◽  
pp. 438-441
Author(s):  
Kevin Schawinski ◽  
C. Megan Urry ◽  
Shanil Virani ◽  
Paolo Coppi ◽  
Steven P. Bamford ◽  
...  

AbstractWe use data from large surveys of the local universe (SDSS+Galaxy Zoo) to show that the galaxy–black hole connection is linked to host morphology at a fundamental level. The fraction of early-type galaxies with actively growing black holes, and therefore the AGN duty cycle, declines significantly with increasing black hole mass. Late-type galaxies exhibit the opposite trend: the fraction of actively growing black holes increases with black hole mass.


2019 ◽  
Vol 489 (1) ◽  
pp. 1373-1378 ◽  
Author(s):  
Kastytis Zubovas ◽  
Andrew King

Abstract Active galactic nuclei (AGNs) probably control the growth of their host galaxies via feedback in the form of wide-angle wind-driven outflows. These establish the observed correlations between supermassive black hole (SMBH) masses and host galaxy properties, e.g. the spheroid velocity dispersion σ. In this paper we consider the growth of the SMBH once it starts driving a large-scale outflow through the galaxy. To clear the gas and ultimately terminate further growth of both the SMBH and the host galaxy, the black hole must continue to grow its mass significantly, by up to a factor of a few, after reaching this point. The mass increment ΔMBH depends sensitively on both galaxy size and SMBH spin. The galaxy size dependence leads to ΔMBH ∝ σ5 and a steepening of the M–σ relation beyond the analytically calculated M ∝ σ4, in agreement with observation. Slowly spinning black holes are much less efficient in producing feedback, so at any given σ the slowest spinning black holes should be the most massive. Current observational constraints are consistent with this picture, but insufficient to test it properly; however, this should change with upcoming surveys.


Author(s):  
Иштимер Шагалиевич Хурамшин

Исходя из того, что массивные черные дыры имеются в центре всех галактик обсуждается их роль в данных образованиях. Сделан вывод, что они являются галактико образующими, формирующими и содержащими факторами этой системы. Обсуждается вопрос о существовании равновесия между черными дырами и галактической массой на основе гравитации, то есть баланса сил между ними. Based on the fact that massive black holes exist in the center of all galaxies, their role in these formations is discussed. It was concluded that they are the galaxy-forming, shaping and containing factors of this system. The question of the existence of an equilibrium between black holes and the galactic mass based on gravity, that is, the balance of forces between them, is discussed.


Sign in / Sign up

Export Citation Format

Share Document