scholarly journals SNIa, white dwarfs and the variation of the gravitational constant

2009 ◽  
Vol 5 (H15) ◽  
pp. 311-311
Author(s):  
J. Isern ◽  
E. Garcia–Berro ◽  
P. Lorén–Aguilar

AbstractThe critical role that the gravitational constant, G, plays in the Theory of General Relativity and the possibility, introduced by theories that unify gravity with other interactions, that G could vary in time and space have bursted the interest in detecting such variations or, at least, to bound them as tightly as possible.White dwarfs represent the last evolutionary stage of stars with masses smaller than 10 ± 2 M⊙. Since their mechanical structure is sustained by the pressure of degenerate electrons, they do not radiate nuclear energy and their evolution is just a simple gravothermal cooling process. On the other hand, white dwarfs in close binary systems can accrete matter from the companion, experiencing nova outbursts, or in some cases they can also reach Chandrasekhar's mass and explode as a Type Ia supernova (SNIa). Since the cooling of single white dwarfs and the properties of SNIa strongly depend on the precise value of G and on its possible secular variation, white dwarfs can be used to constrain such hypothetical variations.When white dwarfs are cool enough, their luminosity is entirely of gravothermal origin. Any variation of G modifies the energy balance of their interiors and, consequently, also modifies their luminosity. Formally, the influence of a secular variation of G can be expressed as L=-Ḃ+Ω(Ġ/G) where B=U+Ω is the total binding energy, U is the total internal energy and Ω is the gravitational energy. Thus, if Ġ ≠ 0 the luminosity is modified and the characteristic cooling time is different from that obtained in the case in which Ġ = 0. Detecting such variations can be done using the luminosity function of white dwarfs, which is defined as the number of white dwarfs of a given luminosity per unit of magnitude interval. It increases monotonically with the magnitude and displays a sharp cut-off due to the finite age of the Galaxy. The position of this cut-off is sensitive to the age of the Galaxy and to the value of Ġ and, thus, it can be used to obtain a bound. White dwarfs also display g-mode pulsations driven by the κ-mechanism and the period of pulsation experiences a secular drift of Ṗ/P ≃ -aṪ/T + bṘ/R, where a and b are model-dependent constants of the order of unity. Since both Ṫ and Ṙ depend on Ġ, the measure of Ṗ can also provide useful constraints.Type Ia supernovae are thought to be the result of the thermonuclear explosion of a carbon-oxygen white dwarf with a mass near Chandrasekhar's limit in a close binary system. The peak luminosity of SNIa is proportional to the mass of nickel synthesized which can be considered as a fixed fraction of the mass of the exploding star, MNi ∝ MCh = (ħc)3/2/mpG3/2. Therefore the properties of this peak with redshift can be used to test the variation of G with cosmic ages.Although the bounds obtained in these ways have been currently superseeded by other more accurate methods, when the ongoing surveys searching for SNIa and white dwarfs will be completed, the expected bounds will be as tight as ~ 10−13 yr−1.

2020 ◽  
Vol 638 ◽  
pp. A131 ◽  
Author(s):  
R. Napiwotzki ◽  
C. A. Karl ◽  
T. Lisker ◽  
S. Catalán ◽  
H. Drechsel ◽  
...  

Close double degenerate binaries are one of the favoured progenitor channels for type Ia supernovae, but it is unclear how many suitable systems there are in the Galaxy. We report results of a large radial velocity survey for double degenerate (DD) binaries using the UVES spectrograph at the ESO VLT (ESO SN Ia Progenitor surveY – SPY). Exposures taken at different epochs are checked for radial velocity shifts indicating close binary systems. We observed 689 targets classified as DA white dwarfs (displaying hydrogen-rich atmospheres), of which 46 were found to possess a cool companion. We measured radial velocities (RV) of the remaining 643 DA white dwarfs. We managed to secure observations at two or more epochs for 625 targets, supplemented by eleven objects meeting our selection criteria from literature. The data reduction and analysis methods applied to the survey data are described in detail. The sample contains 39 double degenerate binaries, only four of which were previously known. Twenty are double-lined systems, in which features from both components are visible, the other 19 are single-lined binaries. We provide absolute RVs transformed to the heliocentric system suitable for kinematic studies. Our sample is large enough to sub-divide by mass: 16 out of 44 low mass targets (≤0.45 M⊙) are detected as DDs, while just 23 of the remaining 567 targets with multiple spectra and mass > 0.45 M⊙ are double. The detected fraction amongst the low mass objects (36.4 ± 7.3%) is significantly higher than for the higher-mass, carbon-oxygen core dominated part of the sample (3.9 ± 0.8%), but it is much lower than expected from the detection efficiency for companion masses of 0.05 M⊙ or higher and a 100% binary fraction. This suggests either companion stars of with a mass below 0.05 M⊙ or some of the low mass white dwarfs are single.


1989 ◽  
Vol 114 ◽  
pp. 408-412
Author(s):  
Rex A. Saffer ◽  
James Liebert

AbstractWe report on a search for short-period binary systems composed of pairs of evolved stars. The search is being carried out concurrently with a program to characterize the kinematical properties of two different samples of stars. Each sample has produced one close binary candidate for which further spectroscopic observations are planned. We also recapitulate the discovery of a close detached binary system composed of two cool DA white dwarfs, and we discuss the null results of Hα observations of the suspected white dwarf/brown dwarf system G 29–38.


1979 ◽  
Vol 53 ◽  
pp. 533-533
Author(s):  
Masayuki Y. Fujimoto

Recent observations have revealed the existence of infrared brightening in some nova explosions, and its absence in others. These infrared excesses are ascribed to thermal emission from grains which are considered to consist of graphite. Such nova explosions are widely accepted to be triggered by hydrogen shell-flashes on the surface of white dwarfs which accrete matter in close binary systems. As for the hydrogen shell-flash, recently, a general theory applicable even to the case of finite amplitude has been developed. According to this theory, the progress of a shell-flash is determined only by the mass of the white dwarf MWD and the mass of the accreted hydrogen-rich envelope ΔMH.


1997 ◽  
Vol 163 ◽  
pp. 777-778
Author(s):  
Atsuo T. Okazaki

AbstractWe examine the two-dimensional structure of m = 1 modes in disks around white dwarfs in close binary systems. We find that the odd modes (warping modes) as well as even modes (eccentric modes) are confined to the outermost part of the disk. The period of the fundamental mode is of a few percent of the binary period, and is insensitive to the parity of the mode. These modes naturally explain the superhump periods of SU UMa stars.


2004 ◽  
Vol 215 ◽  
pp. 571-572 ◽  
Author(s):  
S.-C. Yoon ◽  
N. Langer

Classical studies of accreting white dwarfs have assumed spherical symmetry. However, it is believed that in close binary systems the transfered matter carries angular momentum to spin up the accreting star. Here, we present preliminary results of CO white dwarf models which accrete helium rich matter with effects of rotation considered, in the context of the Sub-Chandrasekhar mass scenario for Type Ia supernovae.


Author(s):  
F. Hoyle ◽  
R. A. Lyttleton

The rate of accretion of interstellar matter by stars as proposed in a previous paper is further discussed. It is shown that this amount, while sufficient for the evolution of the majority of stars, is insufficient by a factor of the order of 10 or more to give a satisfactory description of the general evolution of massive stars and close binary systems of small mass. Consideration of the possibility of increasing the rate of accretion for such exceptional stars leads to the conclusion that this can be carried out satisfactorily only by a corresponding increase in the density of the cloud. Although we were led to this view by considering all the factors involved in accretion and showing that only a change in the density could possibly produce the required increase, it is at once clear from the accretion formula, without detailed discussion of the other quantities involved, that the density is the only factor through which effects could be introduced that do not apply to all stars quite generally. By investigating the various factors in the galaxy affecting the density, it is shown that within 100 parsecs of the galactic plane, and also in local regions, the density may rise above 10−21 g. per c.c., which gives an increase of order 100 times the normal rate for stars lying in these regions. These suggestions receive independent corroboration from investigations by Jeans relating to extra-galactic nebulae which led to average densities also of order 10−21 g. per c.c., while a further argument from geological evidence shows that the average density of material along the sun's track must be higher than 10−21 g. per c.c. It remains to be seen whether future observations will succeed in confirming these suggestions indicated by the requirements of this theory of stellar evolution.


2019 ◽  
Vol 488 (3) ◽  
pp. 4258-4270 ◽  
Author(s):  
Pavel A Denissenkov ◽  
Falk Herwig ◽  
Paul Woodward ◽  
Robert Andrassy ◽  
Marco Pignatari ◽  
...  

ABSTRACT We have modelled the multicycle evolution of rapidly accreting CO white dwarfs (RAWDs) with stable H burning intermittent with strong He-shell flashes on their surfaces for 0.7 ≤ MRAWD/M⊙ ≤ 0.75 and [Fe/H] ranging from 0 to −2.6. We have also computed the i-process nucleosynthesis yields for these models. The i process occurs when convection driven by the He-shell flash ingests protons from the accreted H-rich surface layer, which results in maximum neutron densities Nn, max ≈ 1013–1015 cm−3. The H-ingestion rate and the convective boundary mixing (CBM) parameter ftop adopted in the one-dimensional nucleosynthesis and stellar evolution models are constrained through three-dimensional (3D) hydrodynamic simulations. The mass ingestion rate and, for the first time, the scaling laws for the CBM parameter ftop have been determined from 3D hydrodynamic simulations. We confirm our previous result that the high-metallicity RAWDs have a low mass retention efficiency ($\eta \lesssim 10{{\ \rm per\ cent}}$). A new result is that RAWDs with [Fe/H] $\lesssim -2$ have $\eta \gtrsim 20{{\ \rm per\ cent}}$; therefore, their masses may reach the Chandrasekhar limit and they may eventually explode as SNeIa. This result and the good fits of the i-process yields from the metal-poor RAWDs to the observed chemical composition of the CEMP-r/s stars suggest that some of the present-day CEMP-r/s stars could be former distant members of triple systems, orbiting close binary systems with RAWDs that may have later exploded as SNeIa.


1987 ◽  
Vol 125 ◽  
pp. 281-303
Author(s):  
Ken'ichi Nomoto

The presupernova evolution of stars that form semi-degenerate or strongly degenerate O+Ne+Mg cores is discussed. For the 10–13 M⊙ stars, behavior of off-center neon flashes is crucial. The 8–10 M⊙ stars do not ignite neon and eventually collapse due to electron captures. Properties of supernova explosions and neutron stars expected from these low mass progenitors are compared with the Crab nebula. We also examine the conditions for which neutron stars form from accretion-induced collapse of white dwarfs in close binary systems.


Sign in / Sign up

Export Citation Format

Share Document