FIRST-ORDER DISTRIBUTED FERMI ACCELERATION OF COSMIC RAY HADRONS IN NON-UNIFORM MAGNETIC FIELDS

2009 ◽  
Vol 24 (19) ◽  
pp. 1461-1472 ◽  
Author(s):  
R. SCHLICKEISER

Large-scale spatial variations of the guide magnetic field of interplanetary and interstellar plasmas give rise to the adiabatic focusing term in the Fokker–Planck transport equation of cosmic rays. As a consequence of the adiabatic focusing term, the diffusion approximation to cosmic ray transport in the weak focusing limit gives rise to first-order Fermi acceleration of energetic particles if the product HL of the cross helicity state of Alfvenic turbulence H and the focusing length L is negative. The basic physical mechanisms for this new acceleration process are clarified and the astrophysical conditions for efficient acceleration are investigated. It is shown that in the interstellar medium this mechanism preferentially accelerates cosmic ray hadrons over 10 orders of magnitude in momentum. Due to heavy Coulomb and ionization losses at low momenta, injection or preacceleration of particles above the threshold momentum pc≃0.17Z2/3 GeV /c is required.

2019 ◽  
Vol 488 (1) ◽  
pp. L119-L122 ◽  
Author(s):  
David Wittkowski ◽  
Karl-Heinz Kampert

ABSTRACT Cosmogenic neutrinos originate from interactions of cosmic rays propagating through the universe with cosmic background photons. Since both high-energy cosmic rays and cosmic background photons exist, the existence of high-energy cosmogenic neutrinos is certain. However, their flux has not been measured so far. Therefore, we calculated the flux of high-energy cosmogenic neutrinos arriving at the Earth on the basis of elaborate 4D simulations that take into account three spatial degrees of freedom and the cosmological time-evolution of the universe. Our predictions for this neutrino flux are consistent with the recent upper limits obtained from large-scale cosmic-ray experiments. We also show that the extragalactic magnetic field has a strong influence on the neutrino flux. The results of this work are important for the design of future neutrino observatories, since they allow to assess the detector volume and observation time that are necessary to detect high-energy cosmogenic neutrinos in the near future. An observation of such neutrinos would push multimessenger astronomy to hitherto unachieved energy scales.


2019 ◽  
Vol 630 ◽  
pp. A72 ◽  
Author(s):  
Marco Padovani ◽  
Alexandre Marcowith ◽  
Álvaro Sánchez-Monge ◽  
Fanyi Meng ◽  
Peter Schilke

Context. Radio observations at metre-centimetre wavelengths shed light on the nature of the emission of H II regions. Usually this category of objects is dominated by thermal radiation produced by ionised hydrogen, namely protons and electrons. However, a number of observational studies have revealed the existence of H II regions with a mixture of thermal and non-thermal radiation. The latter represents a clue as to the presence of relativistic electrons. However, neither the interstellar cosmic-ray electron flux nor the flux of secondary electrons, produced by primary cosmic rays through ionisation processes, is high enough to explain the observed flux densities. Aims. We investigate the possibility of accelerating local thermal electrons up to relativistic energies in H II region shocks. Methods. We assumed that relativistic electrons can be accelerated through the first-order Fermi acceleration mechanism and we estimated the emerging electron fluxes, the corresponding flux densities, and the spectral indexes. Results. We find flux densities of the same order of magnitude of those observed. In particular, we applied our model to the “deep south” (DS) region of Sagittarius B2 and we succeeded in reproducing the observed flux densities with an accuracy of less than 20% as well as the spectral indexes. The model also gives constraints on magnetic field strength (0.3–4 mG), density (1–9 × 104 cm−3), and flow velocity in the shock reference frame (33–50 km s−1) expected in DS. Conclusions. We suggest a mechanism able to accelerate thermal electrons inside H II regions through the first-order Fermi acceleration. The existence of a local source of relativistic electrons can explain the origin of both the observed non-thermal emission and the corresponding spectral indexes.


2010 ◽  
Vol 6 (S274) ◽  
pp. 62-71
Author(s):  
A. Lazarian ◽  
G. Kowal ◽  
E. de Gouveia Dal Pino ◽  
E. Vishniac

AbstractOur numerical simulations show that the reconnection of magnetic field becomes fast in the presence of weak turbulence in the way consistent with the Lazarian & Vishniac (1999) model of fast reconnection. This process in not only important for understanding of the origin and evolution of the large-scale magnetic field, but is seen as a possibly efficient particle accelerator producing cosmic rays through the first order Fermi process. In this work we study the properties of particle acceleration in the reconnection zones in our numerical simulations and show that the particles can be efficiently accelerated via the first order Fermi acceleration.


2021 ◽  
Vol 922 (2) ◽  
pp. 124
Author(s):  
Andreas Kopp ◽  
Jan Louis Raath ◽  
Horst Fichtner ◽  
Marius S. Potgieter ◽  
Stefan E. S. Ferreira ◽  
...  

Abstract The transport of energetic particles in the heliosphere is reviewed regarding the treatment of their drifts over an entire solar cycle including the periods around solar maximum, when the tilt angles of the heliospheric current sheet increase to large values and the sign of the magnetic polarity changes. While gradient and curvature drifts are well-established elements of the propagation of cosmic rays in the heliospheric magnetic field, their perturbation by the solar-activity-induced large-scale distortions of dipole-like field configurations and by magnetic turbulence is an open problem. Various empirical or phenomenological approaches have been suggested, but either lack a theory-based motivation or have been shown to be incompatible with measurements. We propose a new approach of more closely investigating solar magnetograms obtained from GONG maps, leading to a new definition of (i) tilt angles that may exceed those provided by the Wilcox Solar Observatory during high activity and of (ii) a “noninteger sign” that can be used to reduce the drifts during these periods as well as to provide a refinement of the magnetic field polarity. The change of sign from A < 0 to A > 0 of solar cycle 24 can be in this way localized to occur between Carrington Rotations 2139 and 2140 in mid 2013. This treatment is fully consistent in the sense that the transport modeling uses the same input data to formulate the boundary conditions at the heliobase as do the magnetohydrodynamic models of the solar wind and the embedded heliospheric magnetic field that exploit solar magnetograms as inner boundary conditions.


2019 ◽  
Vol 623 ◽  
pp. A33 ◽  
Author(s):  
Y. Stein ◽  
R.-J. Dettmar ◽  
J. Irwin ◽  
R. Beck ◽  
M. Weżgowiec ◽  
...  

Context. The observation of total and linearly polarized synchrotron radiation of spiral galaxies in the radio continuum reveals the distribution and structure of their magnetic fields. By observing these, information about the proposed dynamo processes that preserve the large-scale magnetic fields in spiral galaxies can be gained. Additionally, by analyzing the synchrotron intensity, the transport processes of cosmic rays into the halo of edge-on spiral galaxies can be investigated. Aims. We analyze the magnetic field geometry and the transport processes of the cosmic rays of the edge-on spiral starburst galaxy NGC 4666 from CHANG-ES radio data in two frequencies; 6 GHz (C-band) and 1.5 GHz (L-band). Supplementary X-ray data are used to investigate the hot gas in NGC 4666. Methods. We determine the radio scale heights of total power emission at both frequencies for this galaxy. We show the magnetic field orientations derived from the polarization data. Using rotation measure (RM) synthesis we further study the behavior of the RM values along the disk in C-band to investigate the large-scale magnetic-field pattern. We use the revised equipartition formula to calculate a map of the magnetic field strength. Furthermore, we model the processes of cosmic-ray transport into the halo with the 1D SPINNAKER model. Results. The extended radio halo of NGC 4666 is box-shaped and is probably produced by the previously observed supernova-driven superwind. This is supported by our finding of an advective cosmic-ray transport such as that expected for a galactic wind. The scale-height analysis revealed an asymmetric halo above and below the disk as well as between the two sides of the major axis. A central point source as well as a bubble structure is seen in the radio data for the first time. Our X-ray data show a box-shaped hot halo around NGC 4666 and furthermore confirm the AGN nature of the central source. NGC 4666 has a large-scale X-shaped magnetic field in the halo, as has been observed in other edge-on galaxies. The analysis furthermore revealed that the disk of NGC 4666 shows hints of field reversals along its radius, which is the first detection of this phenomenon in an external galaxy.


1970 ◽  
Vol 39 ◽  
pp. 168-183
Author(s):  
E. N. Parker

The topic of this presentation is the origin and dynamical behavior of the magnetic field and cosmic-ray gas in the disk of the Galaxy. In the space available I can do no more than mention the ideas that have been developed, with but little explanation and discussion. To make up for this inadequacy I have tried to give a complete list of references in the written text, so that the interested reader can pursue the points in depth (in particular see the review articles Parker, 1968a, 1969a, 1970). My purpose here is twofold, to outline for you the calculations and ideas that have developed thus far, and to indicate the uncertainties that remain. The basic ideas are sound, I think, but, when we come to the details, there are so many theoretical alternatives that need yet to be explored and so much that is not yet made clear by observations.


1980 ◽  
Vol 91 ◽  
pp. 323-326
Author(s):  
D. J. Mullan ◽  
R. S. Steinolfson

The acceleration of solar cosmic rays in association with certain solar flares is known to be highly correlated with the propagation of an MHD shock through the solar corona (Svestka, 1976). The spatial structure of the sources of solar cosmic rays will be determined by those regions of the corona which are accessible to the flare-induced shock. The regions to which the flare shock is permitted to propagate are determined by the large scale magnetic field structure in the corona. McIntosh (1972, 1979) has demonstrated that quiescent filaments form a single continuous feature (a “baseball stitch”) around the surface of the sun. It is known that helmet streamers overlie quiescent filaments (Pneuman, 1975), and these helmet streamers contain large magnetic neutral sheets which are oriented essentially radially. Hence the magnetic field structure in the low solar corona is characterized by a large-scale radial neutral sheet which weaves around the entire sun following the “baseball stitch”. There is therefore a high probability that as a shock propagates away from a flare, it will eventually encounter this large neutral sheet.


2003 ◽  
Vol 21 (6) ◽  
pp. 1275-1288 ◽  
Author(s):  
B. Heber ◽  
G. Sarri ◽  
G. Wibberenz ◽  
C. Paizis ◽  
P. Ferrando ◽  
...  

Abstract. Ulysses, launched in October 1990, began its second out-of-ecliptic orbit in December 1997, and its second fast latitude scan in September 2000. In contrast to the first fast latitude scan in 1994/1995, during the second fast latitude scan solar activity was close to maximum. The solar magnetic field reversed its polarity around July 2000. While the first latitude scan mainly gave a snapshot of the spatial distribution of galactic cosmic rays, the second one is dominated by temporal variations. Solar particle increases are observed at all heliographic latitudes, including events that produce >250 MeV protons and 50 MeV electrons. Using observations from the University of Chicago’s instrument on board IMP8 at Earth, we find that most solar particle events are observed at both high and low latitudes, indicating either acceleration of these particles over a broad latitude range or an efficient latitudinal transport. The latter is supported by "quiet time" variations in the MeV electron background, if interpreted as Jovian electrons. No latitudinal gradient was found for >106 MeV galactic cosmic ray protons, during the solar maximum fast latitude scan. The electron to proton ratio remains constant and has practically the same value as in the previous solar maximum. Both results indicate that drift is of minor importance. It was expected that, with the reversal of the solar magnetic field and in the declining phase of the solar cycle, this ratio should increase. This was, however, not observed, probably because the transition to the new magnetic cycle was not completely terminated within the heliosphere, as indicated by the Ulysses magnetic field and solar wind measurements. We argue that the new A<0-solar magnetic modulation epoch will establish itself once both polar coronal holes have developed.Key words. Interplanetary physics (cosmic rays; energetic particles; interplanetary magnetic fields)


Galaxies ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 48 ◽  
Author(s):  
Peter L. Biermann ◽  
Philipp P. Kronberg ◽  
Michael L. Allen ◽  
Athina Meli ◽  
Eun-Suk Seo

We propose that the high energy Cosmic Ray particles up to the upturn commonly called the ankle, from around the spectral turn-down commonly called the knee, mostly come from Blue Supergiant star explosions. At the upturn, i.e., the ankle, Cosmic Rays probably switch to another source class, most likely extragalactic sources. To show this we recently compiled a set of Radio Supernova data where we compute the magnetic field, shock speed and shock radius. This list included both Blue and Red Supergiant star explosions; both data show the same magnetic field strength for these two classes of stars despite very different wind densities and velocities. Using particle acceleration theory at shocks, those numbers can be transformed into characteristic ankle and knee energies. Without adjusting any free parameters both of these observed energies are directly indicated by the supernova data. In the next step in the argument, we use the Supernova Remnant data of the starburst galaxy M82. We apply this analysis to Blue Supergiant star explosions: The shock will race to their outer edge with a magnetic field that is observed to follow over several orders of magnitude B ( r ) × r ∼ c o n s t . , with in fact the same magnetic field strength for such stellar explosions in our Galaxy, and other galaxies including M82. The speed is observed to be ∼0.1 c out to about 10 16 cm radius in the plasma wind. The Supernova shock can run through the entire magnetic plasma wind region at full speed all the way out to the wind-shell, which is of order parsec scale in M82. We compare and identify the Cosmic Ray spectrum in other galaxies, in the starburst galaxy M82 and in our Galaxy with each other; we suggest how Blue Supergiant star explosions can provide the Cosmic Ray particles across the knee and up to the ankle energy range. The data from the ISS-CREAM (Cosmic Ray Energetics and Mass Experiment at the International Space Station) mission will test this cosmic ray concept which is reasonably well grounded in two independent radio supernova data sets. The next step in developing our understanding will be to obtain future more accurate Cosmic Ray data near to the knee, and to use unstable isotopes of Cosmic Ray nuclei at high energy to probe the “piston” driving the explosion. We plan to incorporate these data with the physics of the budding black hole which is probably forming in each of these stars.


Sign in / Sign up

Export Citation Format

Share Document