scholarly journals What Radio Astronomy Can Tell us about Galaxy Formation

2010 ◽  
Vol 6 (S277) ◽  
pp. 75-78
Author(s):  
Bruce Partridge

AbstractRadio astronomy, broadly interpreted, has made important contributions to the study of galaxy formation and evolution. Maps of the cosmic microwave background provide information on the seeds of large-scale structure, in addition to refined values of the cosmological parameters. Examples of contributions from more conventional radio astronomy include:–The use of radio observations to track star formation rates since they are not affected by dust obscuration as optical/UV observations are, and the use of molecular line observations to make purely “radio” redshift determinations.

2020 ◽  
Vol 496 (1) ◽  
pp. L54-L58 ◽  
Author(s):  
Kana Moriwaki ◽  
Nina Filippova ◽  
Masato Shirasaki ◽  
Naoki Yoshida

ABSTRACT Line intensity mapping (LIM) is an emerging observational method to study the large-scale structure of the Universe and its evolution. LIM does not resolve individual sources but probes the fluctuations of integrated line emissions. A serious limitation with LIM is that contributions of different emission lines from sources at different redshifts are all confused at an observed wavelength. We propose a deep learning application to solve this problem. We use conditional generative adversarial networks to extract designated information from LIM. We consider a simple case with two populations of emission-line galaxies; H $\rm \alpha$ emitting galaxies at $z$ = 1.3 are confused with [O iii] emitters at $z$ = 2.0 in a single observed waveband at 1.5 $\mu{\textrm m}$. Our networks trained with 30 000 mock observation maps are able to extract the total intensity and the spatial distribution of H $\rm \alpha$ emitting galaxies at $z$ = 1.3. The intensity peaks are successfully located with 74 per cent precision. The precision increases to 91 per cent when we combine five networks. The mean intensity and the power spectrum are reconstructed with an accuracy of ∼10 per cent. The extracted galaxy distributions at a wider range of redshift can be used for studies on cosmology and on galaxy formation and evolution.


2012 ◽  
Vol 8 (S295) ◽  
pp. 137-140
Author(s):  
Diego Capozzi ◽  
Daniel Thomas ◽  
Claudia Maraston ◽  
Luke J. M. Davies

AbstractThe Dark Energy Survey (DES) will be the new state-of the-art in large-scale galaxy imaging surveys. With 5,000 deg2, it will cover an area of the sky similar to SDSS-II, but will go over two magnitudes deeper, reaching 24th magnitude in all four optical bands (griz). DES will further provide observations in the redder Y-band and will be complemented with VISTA observations in the near-infrared bands JHK. Hence DES will furnish an unprecedented combination of sky and wavelength coverage and depth, unreached by any of the existing galaxy surveys. The very nature of the DES data set – large volume at intermediate photometric depth – allows us to probe galaxy formation and evolution within a cosmic-time range of ~ 10 Gyr and in different environments. In fact there will be many galaxy clusters available for galaxy evolution studies, given that one of the main aims of DES is to use their abundance to constrain the equation of state of dark energy. The X-ray follow up of these clusters, coupled with the use of gravitational lensing, will provide very precise measures of their masses, enabling us to study in detail the influence of the environment on galaxy formation and evolution processes. DES will leverage the study of these processes by allowing us to perform a detailed investigation of the galaxy luminosity and stellar mass functions and of the relationship between dark and baryonic matter as described by the Halo Occupation Distribution.


2014 ◽  
Vol 11 (S308) ◽  
pp. 493-523 ◽  
Author(s):  
Rien van de Weygaert

AbstractVoids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do they represent a key constituent of the Cosmic Web, they also are one of the cleanest probes and measures of global cosmological parameters. The shape and evolution of voids are highly sensitive to the nature of dark energy, while their substructure and galaxy population provides a direct key to the nature of dark matter. Also, the pristine environment of void interiors is an important testing ground for our understanding of environmental influences on galaxy formation and evolution. In this paper, we review the key aspects of the structure and dynamics of voids, with a particular focus on the hierarchical evolution of the void population. We demonstrate how the rich structural pattern of the Cosmic Web is related to the complex evolution and buildup of voids.


2012 ◽  
Vol 8 (S292) ◽  
pp. 291-291
Author(s):  
Ting Xiao ◽  
Tinggui Wang ◽  
Huiyuan Wang ◽  
Hongyan Zhou ◽  
Honglin Lu ◽  
...  

AbstractDust is a crucial component of galaxies in modifying the observed properties of galaxies. Previous studies have suggested that dust reddening in star-forming galaxies is correlated with star formation rate (SFR), luminosity, gas-phase metallicity (Z), stellar mass (M*) and inclination. In this work we investigate the fundamental relations between dust reddening and physical properties of galaxies, and obtain a well-defined empirical recipe for dust reddening. The empirical formulae can be incorporated into semi-analytical models of galaxy formation and evolution to estimate the dust reddening and facilitate comparison with observations.


2005 ◽  
Vol 14 (02) ◽  
pp. 223-256 ◽  
Author(s):  
PAOLO CIARCELLUTI

This is the second paper of a series devoted to the study of the cosmological implications of the existence of mirror dark matter. The parallel hidden mirror world has the same microphysics as the observable one and couples the latter only gravitationally. The primordial nucleosynthesis bounds demand that the mirror sector should have a smaller temperature T′ than the ordinary one T, and by this reason its evolution can be substantially deviated from the standard cosmology. In this paper we take scalar adiabatic perturbations as the input in a flat Universe, and compute the power spectra for ordinary and mirror CMB and LSS, changing the cosmological parameters, and always comparing with the CDM case. We find differences in both the CMB and LSS power spectra, and we demonstrate that the LSS spectrum is particularly sensitive to the mirror parameters, due to the presence of both the oscillatory features of mirror baryons and the collisional mirror Silk damping. For x<0.3 the mirror baryon–photon decoupling happens before the matter–radiation equality, so that CMB and LSS power spectra in linear regime are equivalent for mirror and CDM cases. For higher x-values the LSS spectra strongly depend on the amount of mirror baryons. Finally, qualitatively comparing with the present observational limits on the CMB and LSS spectra, we show that for x<0.3 the entire dark matter could be made of mirror baryons, while in the case x≳0.3 the pattern of the LSS power spectrum excludes the possibility of dark matter consisting entirely of mirror baryons, but they could present as admixture (up to ~50%) to the conventional CDM.


2011 ◽  
Vol 7 (S284) ◽  
pp. 446-455 ◽  
Author(s):  
Michael Rowan-Robinson

AbstractI review work on modelling the infrared and submillimetre SEDs of galaxies. The underlying physical assumptions are discussed and spherically symmetric, axisymmetric, and 3-dimensional radiative transfer codes are reviewed. Models for galaxies with Spitzer IRS data and for galaxies in the Herschel-Hermes survey are discussed. Searches for high redshift infrared and submillimetre galaxies, the star formation history, the evolution of dust extinction, and constraints from source-counts, are briefly discussed.


2015 ◽  
Vol 11 (S319) ◽  
pp. 109-109
Author(s):  
Hideki Umehata

AbstractThe role of the large-scale structure is one of the most important theme in studying galaxy formation and evolution. However, it has been still mystery especially at z>2. On the basis of our ALMA 1.1 mm observations in a z ~ 3 protocluster field, it is suggested that submillimeter galaxies (SMGs) preferentially reside in the densest environment at z ~ 3. Furthermore we find a rich cluster of AGN-host SMGs at the core of the protocluster, combining with Chandra X-ray data. Our results indicate the vigorous star-formation and accelerated super massive black hole (SMBH) growth in the node of the cosmic web.


Sign in / Sign up

Export Citation Format

Share Document