scholarly journals Gas Flows in Galaxies: the Relative Importance of Mergers and Bars.

2010 ◽  
Vol 6 (S277) ◽  
pp. 178-181
Author(s):  
Sara L. Ellison ◽  
David R. Patton ◽  
Preethi Nair ◽  
Luc Simard ◽  
J. Trevor Mendel ◽  
...  

AbstractGalaxy-galaxy interactions and large scale galaxy bars are usually considered as the two main mechanisms for driving gas to the centres of galaxies. By using large samples of galaxy pairs and visually classified bars from the Sloan Digital Sky Survey (SDSS), we compare the relative efficiency of gas inflows from these two processes. We use two indicators of gas inflow: star formation rate (SFR) and gas phase metallicity, which are both measured relative to control samples. Whereas the metallicity of galaxy pairs is suppressed relative to its control sample of isolated galaxies, galaxies with bars are metal-rich for their stellar mass by 0.06 dex over all stellar masses. The SFRs of both the close galaxy pairs and the barred galaxies are enhanced by ~60%, but in the bars the enhancement is only seen at stellar masses M∗ > 1010 M⊙. Taking into account the relative frequency of bars and pairs, we estimate that at least three times more central star formation is triggered by bars than by interactions.

2013 ◽  
Vol 91 (4) ◽  
pp. 337-342
Author(s):  
Xin-Fa Deng

From each of two volume-limited main galaxy samples of the Sloan Digital Sky Survey data release 7, a paired galaxy sample and an isolated galaxy sample are constructed and comparative studies between the star formation of galaxies in pairs and isolated are performed to explore influences of galaxy interactions on star formation. It is found that isolated galaxies have an enhancement of the star formation rate and the specific star formation rate, which suggests that interactions between galaxies are not the trigger of enhanced star formation.


1996 ◽  
Vol 157 ◽  
pp. 188-196 ◽  
Author(s):  
Luis C. Ho ◽  
Alexei V. Filippenko ◽  
Wallace L. W. Sargent

AbstractTheoretical studies suggest that large-scale stellar bars can be highly effective in delivering gas to the central few hundred parsecs of a spiral galaxy, which may then initiate rapid star formation. Further instabilities may lead to additional inflow to physical scales relevant for active galactic nuclei. We test these predictions in light of recent observations. Compared to unbarred spirals, barred galaxies of type S0-Sbc have a higher probability of exhibiting nuclear star formation, as well as a higher formation rate of massive stars; neither effect is present in spirals of later morphological type. Bars, on the other hand, do not have an obvious influence on active nuclei. We discuss the implications of these findings for the fueling of central star formation and active nuclei.


2013 ◽  
Vol 22 (2) ◽  
Author(s):  
Xin-Fa Deng ◽  
Fuyang Zhang

AbstractFrom the apparent magnitude-limited the Main galaxy sample of the Sloan Digital Sky Survey Data Release 7, we construct a paired galaxy sample and a control sample without close companions with the projected separations


2020 ◽  
Vol 499 (1) ◽  
pp. 1406-1423 ◽  
Author(s):  
Lin Lin ◽  
Cheng Li ◽  
Cheng Du ◽  
Enci Wang ◽  
Ting Xiao ◽  
...  

ABSTRACT We analyse two-dimensional maps and radial profiles of EW(Hα), EW(HδA), and Dn(4000) of low-redshift galaxies using integral field spectroscopy from the MaNGA survey. Out of ≈1400 nearly face-on late-type galaxies with a redshift z < 0.05, we identify 121 “turnover” galaxies that each have a central upturn in EW(Hα), EW(HδA), and/or a central drop in Dn(4000), indicative of ongoing/recent star formation. The turnover features are found mostly in galaxies with a stellar mass above ∼1010 M⊙ and NUV – r colour less than ≈5. The majority of the turnover galaxies are barred, with a bar fraction of 89 ± 3 per cent. Furthermore, for barred galaxies, the radius of the central turnover region is found to tightly correlate with one-third of the bar length. Comparing the observed and the inward extrapolated star formation rate surface density, we estimate that the central SFR have been enhanced by an order of magnitude. Conversely, only half of the barred galaxies in our sample have a central turnover feature, implying that the presence of a bar is not sufficient to lead to a central SF enhancement. We further examined the SF enhancement in paired galaxies, as well as the local environment, finding no relation. This implies that the environment is not a driving factor for central SF enhancement in our sample. Our results reinforce both previous findings and theoretical expectation that galactic bars play a crucial role in the secular evolution of galaxies by driving gas inflow and enhancing the star formation and bulge growth in the centre.


2015 ◽  
Vol 449 (4) ◽  
pp. 3719-3740 ◽  
Author(s):  
Jillian M. Scudder ◽  
Sara L. Ellison ◽  
Emmanuel Momjian ◽  
Jessica L. Rosenberg ◽  
Paul Torrey ◽  
...  

2021 ◽  
Vol 923 (2) ◽  
pp. 205
Author(s):  
Hassen M. Yesuf ◽  
Luis C. Ho ◽  
S. M. Faber

Abstract The morphology and structure of galaxies reflect their star formation and assembly histories. We use the framework of mutual information (MI) to quantify the interdependence among several structural variables and to rank them according to their relevance for predicting the specific star formation rate (SSFR) by comparing the MI of the predictor variables with the SSFR and penalizing variables that are redundant. We apply this framework to study ∼3700 face-on star-forming galaxies (SFGs) with varying degrees of bulge dominance and central concentration and with stellar mass M ⋆ ≈ 109 M ⊙−5 × 1011 M ⊙ at redshift z = 0.02–0.12. We use the Sloan Digital Sky Survey (SDSS) Stripe 82 deep i-band imaging data, which improve measurements of asymmetry and bulge dominance indicators. We find that star-forming galaxies are a multiparameter family. In addition to M ⋆, asymmetry emerges as the most powerful predictor of SSFR residuals of SFGs, followed by bulge prominence/concentration. Star-forming galaxies with higher asymmetry and stronger bulges have higher SSFR at a given M ⋆. The asymmetry reflects both irregular spiral arms and lopsidedness in seemingly isolated SFGs and structural perturbations by galaxy interactions or mergers.


2020 ◽  
Vol 500 (3) ◽  
pp. 3802-3820
Author(s):  
L M Hogarth ◽  
A Saintonge ◽  
L Cortese ◽  
T A Davis ◽  
S M Croom ◽  
...  

ABSTRACT We perform a joint analysis of high spatial resolution molecular gas and star-formation rate (SFR) maps in main-sequence star-forming galaxies experiencing galactic-scale outflows of ionized gas. Our aim is to understand the mechanism that determines which galaxies are able to launch these intense winds. We observed CO(1→0) at 1-arcsec resolution with ALMA in 16 edge-on galaxies, which also have 2-arcsec spatial-resolution optical integral field observations from the SAMI Galaxy Survey. Half the galaxies in the sample were previously identified as harbouring intense and large-scale outflows of ionized gas (‘outflow types’) and the rest serve as control galaxies. The data set is complemented by integrated CO(1→0) observations from the IRAM 30-m telescope to probe the total molecular gas reservoirs. We find that the galaxies powering outflows do not possess significantly different global gas fractions or star-formation efficiencies when compared with a control sample. However, the ALMA maps reveal that the molecular gas in the outflow-type galaxies is distributed more centrally than in the control galaxies. For our outflow-type objects, molecular gas and star-formation are largely confined within their inner effective radius (reff), whereas in the control sample, the distribution is more diffuse, extending far beyond reff. We infer that outflows in normal star-forming galaxies may be caused by dynamical mechanisms that drive molecular gas into their central regions, which can result in locally enhanced gas surface density and star-formation.


2020 ◽  
Vol 499 (3) ◽  
pp. 3193-3213
Author(s):  
J Bok ◽  
R E Skelton ◽  
M E Cluver ◽  
T H Jarrett ◽  
M G Jones ◽  
...  

ABSTRACT Using mid-infrared star formation rate and stellar mass indicators in WISE (Wide-field Infrared Survey Explorer), we construct and contrast the relation between star formation rate and stellar mass for isolated and paired galaxies. Our samples comprise a selection of AMIGA (Analysis of the interstellar Medium in Isolated GAlaxies; isolated galaxies) and pairs of ALFALFA (Arecibo Legacy Fast ALFA) galaxies with H i detections such that we can examine the relationship between H i content (gas fraction, H i deficiency) and galaxy location on the main sequence (MS) in these two contrasting environments. We derive for the first time an H i scaling relation for isolated galaxies using WISE stellar masses, and thereby establish a baseline predictor of H i content that can be used to assess the impact of environment on H i content when compared with samples of galaxies in different environments. We use this updated relation to determine the H i deficiency of both our paired and isolated galaxies. Across all the quantities examined as a function of environment in this work (MS location, gas fraction, and H i deficiency), the AMIGA sample of isolated galaxies is found to have the lower dispersion: σAMIGA = 0.37 versus σPAIRS = 0.55 on the MS, σAMIGA = 0.44 versus σPAIRS = 0.54 in gas fraction, and σAMIGA = 0.28 versus σPAIRS = 0.34 in H i deficiency. We also note fewer isolated quiescent galaxies, 3 (0.6${{\ \rm per\ cent}}$), compared to 12 (2.3${{\ \rm per\ cent}}$) quiescent pair members. Our results suggest the differences in scatter measured between our samples are environment driven. Galaxies in isolation behave relatively predictably, and galaxies in more densely populated environments adopt a more stochastic behaviour, across a broad range of quantities.


2021 ◽  
Vol 923 (1) ◽  
pp. 6
Author(s):  
Gaoxiang Jin ◽  
Y. Sophia Dai ◽  
Hsi-An Pan ◽  
Lihwai Lin ◽  
Cheng Li ◽  
...  

Abstract The role of active galactic nuclei (AGNs) during galaxy interactions and how they influence the star formation in the system are still under debate. We use a sample of 1156 galaxies in galaxy pairs or mergers (hereafter “pairs”) from the MaNGA survey. This pair sample is selected by the velocity offset, projected separation, and morphology, and is further classified into four cases along the merger sequence based on morphological signatures. We then identify a total of 61 (5.5%) AGNs in pairs based on the emission-line diagnostics. No evolution of the AGN fraction is found, either along the merger sequence or compared to isolated galaxies (5.0%). We observe a higher fraction of passive galaxies in galaxy pairs, especially in the pre-merging cases, and associate the higher fraction to their environmental dependence. The isolated AGN and AGNs in pairs show similar distributions in their global stellar mass, star-formation rate (SFR), and central [O iii] surface brightness. AGNs in pairs show radial profiles of increasing specific SFR and declining Dn4000 from center to outskirts, and no significant difference from the isolated AGNs. This is clearly different from star-forming galaxies (SFGs) in our pair sample, which show enhanced central star formation, as reported before. AGNs in pairs have lower Balmer decrements at outer regions, possibly indicating less dust attenuation. Our findings suggest that AGNs are likely follow an inside-out quenching and the merger impact on the star formation in AGNs is less prominent than in SFGs.


2019 ◽  
Vol 627 ◽  
pp. A26 ◽  
Author(s):  
J. Neumann ◽  
D. A. Gadotti ◽  
L. Wisotzki ◽  
B. Husemann ◽  
G. Busch ◽  
...  

The absence of star formation in the bar region that has been reported for some galaxies can theoretically be explained by shear. However, it is not clear how star-forming (SF) bars fit into this picture and how the dynamical state of the bar is related to other properties of the host galaxy. We used integral-field spectroscopy from VLT/MUSE to investigate how star formation within bars is connected to structural properties of the bar and the host galaxy. We derived spatially resolved Hα fluxes from MUSE observations from the CARS survey to estimate star formation rates in the bars of 16 nearby (0.01 <  z <  0.06) disc galaxies with stellar masses between 1010 M⊙ and 1011 M⊙. We further performed a detailed multicomponent photometric decomposition on images derived from the data cubes. We find that bars clearly divide into SF and non-SF types, of which eight are SF and eight are non-SF. Whatever the responsible quenching mechanism is, it is a quick process compared to the lifetime of the bar. The star formation of the bar appears to be linked to the flatness of the surface brightness profile in the sense that only the flattest bars (nbar≤0.4) are actively SF (SFRb >  0.5 M⊙ yr−1). Both parameters are uncorrelated with Hubble type. We find that star formation is 1.75 times stronger on the leading than on the trailing edge and is radially decreasing. The conditions to host non-SF bars might be connected to the presence of inner rings. Additionally, from testing an AGN feeding scenario, we report that the star formation rate of the bar is uncorrelated with AGN bolometric luminosity. The results of this study may only apply to type-1 AGN hosts and need to be confirmed for the full population of barred galaxies.


Sign in / Sign up

Export Citation Format

Share Document