scholarly journals SDSS-IV MaNGA: the indispensable role of bars in enhancing the central star formation of low-z galaxies

2020 ◽  
Vol 499 (1) ◽  
pp. 1406-1423 ◽  
Author(s):  
Lin Lin ◽  
Cheng Li ◽  
Cheng Du ◽  
Enci Wang ◽  
Ting Xiao ◽  
...  

ABSTRACT We analyse two-dimensional maps and radial profiles of EW(Hα), EW(HδA), and Dn(4000) of low-redshift galaxies using integral field spectroscopy from the MaNGA survey. Out of ≈1400 nearly face-on late-type galaxies with a redshift z < 0.05, we identify 121 “turnover” galaxies that each have a central upturn in EW(Hα), EW(HδA), and/or a central drop in Dn(4000), indicative of ongoing/recent star formation. The turnover features are found mostly in galaxies with a stellar mass above ∼1010 M⊙ and NUV – r colour less than ≈5. The majority of the turnover galaxies are barred, with a bar fraction of 89 ± 3 per cent. Furthermore, for barred galaxies, the radius of the central turnover region is found to tightly correlate with one-third of the bar length. Comparing the observed and the inward extrapolated star formation rate surface density, we estimate that the central SFR have been enhanced by an order of magnitude. Conversely, only half of the barred galaxies in our sample have a central turnover feature, implying that the presence of a bar is not sufficient to lead to a central SF enhancement. We further examined the SF enhancement in paired galaxies, as well as the local environment, finding no relation. This implies that the environment is not a driving factor for central SF enhancement in our sample. Our results reinforce both previous findings and theoretical expectation that galactic bars play a crucial role in the secular evolution of galaxies by driving gas inflow and enhancing the star formation and bulge growth in the centre.

2006 ◽  
Vol 2 (S235) ◽  
pp. 19-23 ◽  
Author(s):  
F. Combes

AbstractNew observations in favour of a significant role of secular evolution are reviewed: central star formation boosted in pseudo-bulge barred galaxies, relations between bulge and disk, evidence for rejuvenated bulges. Numerical simulations have shown that secular evolution can occur through a cycle of bar formation and destruction, in which the gas plays a major role. Since bars are weakened or destroyed in gaseous disks, the high frequency of bars observed today requires external cold gas accretion, to replenish the disk and allow a new bar formation. The rate of gas accretion from external filaments is compatible with what is observed in cosmological simulations.


2020 ◽  
Vol 637 ◽  
pp. A25 ◽  
Author(s):  
Angelos Nersesian ◽  
Sam Verstocken ◽  
Sébastien Viaene ◽  
Maarten Baes ◽  
Emmanuel M. Xilouris ◽  
...  

Context. Dust in late-type galaxies in the local Universe is responsible for absorbing approximately one third of the energy emitted by stars. It is often assumed that dust heating is mainly attributable to the absorption of ultraviolet and optical photons emitted by the youngest (≤100 Myr) stars. Consequently, thermal re-emission by dust at far-infrared wavelengths is often linked to the star-formation activity of a galaxy. However, several studies argue that the contribution to dust heating by much older stellar populations might be more significant than previously thought. Advances in radiation transfer simulations finally allow us to actually quantify the heating mechanisms of diffuse dust by the stellar radiation field. Aims. As one of the main goals in the DustPedia project, we have developed a framework to construct detailed 3D stellar and dust radiative transfer models for nearby galaxies. In this study, we analyse the contribution of the different stellar populations to the dust heating in four nearby face-on barred galaxies: NGC 1365, M 83, M 95, and M 100. We aim to quantify the fraction directly related to young stellar populations, both globally and on local scales, and to assess the influence of the bar on the heating fraction. Methods. From 2D images we derive the 3D distributions of stars and dust. To model the complex geometries, we used SKIRT, a state-of-the-art 3D Monte Carlo radiative transfer code designed to self-consistently simulate the absorption, scattering, and thermal re-emission by the dust for arbitrary 3D distributions. Results. We derive global attenuation laws for each galaxy and confirm that galaxies of high specific star-formation rate have shallower attenuation curves and weaker UV bumps. On average, 36.5% of the bolometric luminosity is absorbed by dust in our galaxy sample. We report a clear effect of the bar structure on the radial profiles of the dust-heating fraction by the young stellar populations, and the dust temperature. We find that the young stellar populations are the main contributors to the dust heating, donating, on average ∼59% of their luminosity to this purpose throughout the galaxy. This dust-heating fraction drops to ∼53% in the bar region and ∼38% in the bulge region where the old stars are the dominant contributors to the dust heating. We also find a strong link between the heating fraction by the young stellar populations and the specific star-formation rate.


2012 ◽  
Vol 8 (S295) ◽  
pp. 323-323
Author(s):  
Zhi-Min Zhou ◽  
Chen Cao ◽  
Hong Wu

AbstractStellar bars are important internal drivers of the secular evolution of disk galaxies. Using a sample of nearby barred galaxies with weak and strong bars, we evaluate the correlations between star formation properties in different galactic structures and their associated bars, and try to interpret the complex process of bar-driven secular evolution. We find that weaker bars tend to associate with lower concentrical star formation activities, while stronger bars appear to have large scatter in the distribution of the global star formation activities. In general, the star formation activities in early- and late-type galaxies have different behavior, with similar star formation rate density distributions. In addition, there are only weak trends toward increased star formation activities in bulges and galaxies with stronger bars, which is consistent with previous works. Our results suggest that the different stages of the evolutionary sequence and many factors besides bars may contribute to the complexity of this process. Furthermore, significant correlations are found between the star formation activities in different galactic structures, in which barred galaxies with intense star formation in bulges tend to also have active star formation in their bars and disks. Most bulges have higher star formation densities than their associated bars and disks, indicating the presence of bar-driven evolution. Therefore, we derived a possible criterion (Figure 1) to quantify the different stages of a bar-driven evolutionary sequence. Future work is needed to improve on the uncertainties of this study.


2010 ◽  
Vol 6 (S277) ◽  
pp. 178-181
Author(s):  
Sara L. Ellison ◽  
David R. Patton ◽  
Preethi Nair ◽  
Luc Simard ◽  
J. Trevor Mendel ◽  
...  

AbstractGalaxy-galaxy interactions and large scale galaxy bars are usually considered as the two main mechanisms for driving gas to the centres of galaxies. By using large samples of galaxy pairs and visually classified bars from the Sloan Digital Sky Survey (SDSS), we compare the relative efficiency of gas inflows from these two processes. We use two indicators of gas inflow: star formation rate (SFR) and gas phase metallicity, which are both measured relative to control samples. Whereas the metallicity of galaxy pairs is suppressed relative to its control sample of isolated galaxies, galaxies with bars are metal-rich for their stellar mass by 0.06 dex over all stellar masses. The SFRs of both the close galaxy pairs and the barred galaxies are enhanced by ~60%, but in the bars the enhancement is only seen at stellar masses M∗ > 1010 M⊙. Taking into account the relative frequency of bars and pairs, we estimate that at least three times more central star formation is triggered by bars than by interactions.


2021 ◽  
Vol 923 (1) ◽  
pp. 6
Author(s):  
Gaoxiang Jin ◽  
Y. Sophia Dai ◽  
Hsi-An Pan ◽  
Lihwai Lin ◽  
Cheng Li ◽  
...  

Abstract The role of active galactic nuclei (AGNs) during galaxy interactions and how they influence the star formation in the system are still under debate. We use a sample of 1156 galaxies in galaxy pairs or mergers (hereafter “pairs”) from the MaNGA survey. This pair sample is selected by the velocity offset, projected separation, and morphology, and is further classified into four cases along the merger sequence based on morphological signatures. We then identify a total of 61 (5.5%) AGNs in pairs based on the emission-line diagnostics. No evolution of the AGN fraction is found, either along the merger sequence or compared to isolated galaxies (5.0%). We observe a higher fraction of passive galaxies in galaxy pairs, especially in the pre-merging cases, and associate the higher fraction to their environmental dependence. The isolated AGN and AGNs in pairs show similar distributions in their global stellar mass, star-formation rate (SFR), and central [O iii] surface brightness. AGNs in pairs show radial profiles of increasing specific SFR and declining Dn4000 from center to outskirts, and no significant difference from the isolated AGNs. This is clearly different from star-forming galaxies (SFGs) in our pair sample, which show enhanced central star formation, as reported before. AGNs in pairs have lower Balmer decrements at outer regions, possibly indicating less dust attenuation. Our findings suggest that AGNs are likely follow an inside-out quenching and the merger impact on the star formation in AGNs is less prominent than in SFGs.


2019 ◽  
Vol 627 ◽  
pp. A26 ◽  
Author(s):  
J. Neumann ◽  
D. A. Gadotti ◽  
L. Wisotzki ◽  
B. Husemann ◽  
G. Busch ◽  
...  

The absence of star formation in the bar region that has been reported for some galaxies can theoretically be explained by shear. However, it is not clear how star-forming (SF) bars fit into this picture and how the dynamical state of the bar is related to other properties of the host galaxy. We used integral-field spectroscopy from VLT/MUSE to investigate how star formation within bars is connected to structural properties of the bar and the host galaxy. We derived spatially resolved Hα fluxes from MUSE observations from the CARS survey to estimate star formation rates in the bars of 16 nearby (0.01 <  z <  0.06) disc galaxies with stellar masses between 1010 M⊙ and 1011 M⊙. We further performed a detailed multicomponent photometric decomposition on images derived from the data cubes. We find that bars clearly divide into SF and non-SF types, of which eight are SF and eight are non-SF. Whatever the responsible quenching mechanism is, it is a quick process compared to the lifetime of the bar. The star formation of the bar appears to be linked to the flatness of the surface brightness profile in the sense that only the flattest bars (nbar≤0.4) are actively SF (SFRb >  0.5 M⊙ yr−1). Both parameters are uncorrelated with Hubble type. We find that star formation is 1.75 times stronger on the leading than on the trailing edge and is radially decreasing. The conditions to host non-SF bars might be connected to the presence of inner rings. Additionally, from testing an AGN feeding scenario, we report that the star formation rate of the bar is uncorrelated with AGN bolometric luminosity. The results of this study may only apply to type-1 AGN hosts and need to be confirmed for the full population of barred galaxies.


1996 ◽  
Vol 157 ◽  
pp. 188-196 ◽  
Author(s):  
Luis C. Ho ◽  
Alexei V. Filippenko ◽  
Wallace L. W. Sargent

AbstractTheoretical studies suggest that large-scale stellar bars can be highly effective in delivering gas to the central few hundred parsecs of a spiral galaxy, which may then initiate rapid star formation. Further instabilities may lead to additional inflow to physical scales relevant for active galactic nuclei. We test these predictions in light of recent observations. Compared to unbarred spirals, barred galaxies of type S0-Sbc have a higher probability of exhibiting nuclear star formation, as well as a higher formation rate of massive stars; neither effect is present in spirals of later morphological type. Bars, on the other hand, do not have an obvious influence on active nuclei. We discuss the implications of these findings for the fueling of central star formation and active nuclei.


2014 ◽  
Vol 438 (4) ◽  
pp. 3490-3506 ◽  
Author(s):  
E. Tescari ◽  
A. Katsianis ◽  
J. S. B. Wyithe ◽  
K. Dolag ◽  
L. Tornatore ◽  
...  

2011 ◽  
Vol 735 (1) ◽  
pp. 53 ◽  
Author(s):  
Shannon G. Patel ◽  
Daniel D. Kelson ◽  
Bradford P. Holden ◽  
Marijn Franx ◽  
Garth D. Illingworth

Author(s):  
Mathew Varidel ◽  
Michael Pracy ◽  
Scott Croom ◽  
Matt S. Owers ◽  
Elaine Sadler

AbstractWe have used integral field spectroscopy of a sample of six nearby (z ~ 0.01–0.04) high star-formation rate ($\text{SFR} \sim 10\hbox{--}40$$\text{M}_\odot \text{ yr$^{-1}$}$) galaxies to investigate the relationship between local velocity dispersion and star-formation rate on sub-galactic scales. The low-redshift mitigates, to some extent, the effect of beam smearing which artificially inflates the measured dispersion as it combines regions with different line-of-sight velocities into a single spatial pixel. We compare the parametric maps of the velocity dispersion with the Hα flux (a proxy for local star-formation rate), and the velocity gradient (a proxy for the local effect of beam smearing). We find, even for these very nearby galaxies, the Hα velocity dispersion correlates more strongly with velocity gradient than with Hα flux—implying that beam smearing is still having a significant effect on the velocity dispersion measurements. We obtain a first-order non parametric correction for the unweighted and flux weighted mean velocity dispersion by fitting a 2D linear regression model to the spaxel-by-spaxel data where the velocity gradient and the Hα flux are the independent variables and the velocity dispersion is the dependent variable; and then extrapolating to zero velocity gradient. The corrected velocity dispersions are a factor of ~ 1.3–4.5 and ~ 1.3–2.7 lower than the uncorrected flux-weighted and unweighted mean line-of-sight velocity dispersion values, respectively. These corrections are larger than has been previously cited using disc models of the velocity and velocity dispersion field to correct for beam smearing. The corrected flux-weighted velocity dispersion values are σm ~ 20–50 km s−1.


Sign in / Sign up

Export Citation Format

Share Document