scholarly journals The Baade–Becker–Wesselink technique and the fundamental astrophysical parameters of Cepheids

2012 ◽  
Vol 8 (S289) ◽  
pp. 195-202
Author(s):  
Alexey S. Rastorguev ◽  
Andrey K. Dambis ◽  
Marina V. Zabolotskikh ◽  
Leonid N. Berdnikov ◽  
Natalia A. Gorynya

AbstractThe Baade–Becker–Wesselink (BBW) method remains one of most often used tools to derive a full set of Cepheid astrophysical parameters. The surface brightness version of the BBW technique was preferentially used during the past few decades to calculate Cepheid radii and to improve period–luminosity–colour relations. Its implementation requires a priori knowledge of Cepheid reddening values. We propose a new version of the BBW technique, which allows one to independently determine the colour excess and the intrinsic colour of a radially pulsating star, in addition to its radius, luminosity and distance. The new technique is a generalization of the Balona light curve-modelling approach. The method also allows calibration of the function F(CI0) = BC(CI0) + 10 log [Teff (CI0)] for the class of pulsating stars considered. We apply this technique to a number of classical Cepheids with very accurate light and radial-velocity curves. The new technique can also be applied to other pulsating variables, e.g., RR Lyrae stars. We also discuss the possible dependence of the projection factor on the pulsation phase.

2004 ◽  
Vol 193 ◽  
pp. 502-505
Author(s):  
M. Marconi ◽  
G. Bono ◽  
T.E. Nordgren

Abstract We present the period-radius relations predicted by nonlinear convective models of Classical Cepheids and RR Lyrae stars. For the former variables we show that the metallicity effect is negligible for both fundamental and first overtone pulsators. This confirms the power of the period-radius relation to estimate Cepheid radii and in turn distances. For the latter class of variables we show that the dispersion of the period-radius relation of both fundamental and first overtone pulsators is significantly reduced once the metallicity dependence is taken into account. This provides a robust method to evaluate the radius of observed RR Lyrae with measured period and metal abundance.


2018 ◽  
Vol 14 (S344) ◽  
pp. 86-89
Author(s):  
Anna M. Jacyszyn-Dobrzeniecka ◽  

AbstractWe present a three-dimensional structure of the Magellanic System using over 9 000 Classical Cepheids and almost 23 000 RR Lyrae stars from the OGLE Collection of Variable Stars. Given the vast coverage of the OGLE-IV data and very high completeness of the sample, we were able to study the Magellanic System in great details.We very carefully studied the distribution of both types of pulsators in the Magellanic Bridge area. We show that there is no evident physical connection between the Clouds in RR Lyrae stars distribution. We only see the two extended structures overlapping. There are few classical Cepheids in the Magellanic Bridge area that seem to form a genuine connection between the Clouds. Their on-sky locations match very well young stars and neutral hydrogen density contours. We also present three-dimensional distribution of classical pulsators in both Magellanic Clouds.


2000 ◽  
Vol 176 ◽  
pp. 334-337
Author(s):  
Michael U. Feuchtinger ◽  
Ernst A. Dorfi

AbstractBy performing detailed frequency-dependent radiative transfer computations we are able to calculate light curves in particular bandpasses from stellar pulsation models calculated by the Vienna nonlinear convective pulsation code. As a sample application we discuss UBVI light curves of RR Lyrae stars. The properties of these light curves are analyzed by means of standard Fourier decomposition, and a comparison to recent observations is performed. As main results we find a good agreement with important observed RR Lyrae properties like pulsation amplitudes and Fourier parameters in B, V, and I bands. Additionally, from the synthetic color curves we derive linear transformation laws between amplitudes as well as Fourier parameters in the different bandpasses.


2000 ◽  
Vol 176 ◽  
pp. 235-236 ◽  
Author(s):  
W. Ogloza ◽  
P. Moskalik ◽  
S. Kanbur

AbstractIt is a well-known property of Cepheids and RR Lyrae variables that their maximum brightness approximately coincides with the maximum expansion velocity. A more detailed investigation (Carson & Stothers 1984; Simon 1984) has shown that the velocity curve is in fact slightly retarded with the respect to the light variations. In this report we discuss the trends in the observed phase lag for an extensive sample of classical Cepheids and RRab variables.


2019 ◽  
Vol 623 ◽  
pp. A116 ◽  
Author(s):  
Pierre Kervella ◽  
Alexandre Gallenne ◽  
Nancy Remage Evans ◽  
Laszlo Szabados ◽  
Frédéric Arenou ◽  
...  

Context. Classical Cepheids (CCs) and RR Lyrae stars (RRLs) are important classes of variable stars used as standard candles to estimate galactic and extragalactic distances. Their multiplicity is imperfectly known, particularly for RRLs. Astoundingly, to date only one RRL has convincingly been demonstrated to be a binary, TU UMa, out of tens of thousands of known RRLs. Aims. Our aim is to detect the binary and multiple stars present in a sample of Milky Way CCs and RRLs. Methods. In the present article, we combine the HIPPARCOS and Gaia DR2 positions to determine the mean proper motion of the targets, and we search for proper motion anomalies (PMa) caused by close-in orbiting companions. Results. We identify 57 CC binaries from PMa out of 254 tested stars and 75 additional candidates, confirming the high binary fraction of these massive stars. For 28 binary CCs, we determine the companion mass by combining their spectroscopic orbital parameters and astrometric PMa. We detect 13 RRLs showing a significant PMa out of 198 tested stars, and 61 additional candidates. Conclusions. We determine that the binary fraction of CCs is likely above 80%, while that of RRLs is at least 7%. The newly detected systems will be useful to improve our understanding of their evolutionary states. The discovery of a significant number of RRLs in binary systems also resolves the long-standing mystery of their extremely low apparent binary fraction.


1979 ◽  
Vol 46 ◽  
pp. 467-473
Author(s):  
Yoji Osaki

The Beta Cephei (or Beta Canis Majoris) stars are a small group of pulsating variables of early spectral type. There are some 20 “classical” β Cephei stars, and several new or suspected variables in this group. The classical β Cephei stars are confined in a narrow “instability strip” which lies about 1 mag above and nearly parallel to the zero-age main-sequence of massive stars (M~10-20 M⊙). They are thus located far away from other well-known pulsating variables such as classical Cepheids and RR Lyrae stars in the HR diagram.


2019 ◽  
Vol 14 (S353) ◽  
pp. 1-5
Author(s):  
Pawel Pietrukowicz

AbstractClassical Cepheids and RR Lyrae-type variable stars are widely-used tracers of young (< 300 Myr) and old (> 10 Gyr) stellar populations, respectively. These stars also serve as distance indicators allowing for Galactic structure studies. Robust detection of pulsating variables requires precise and relatively frequent observations over several years. Recently, the OGLE survey has discovered nearly 1,300 new genuine classical Cepheids and 15,000 RR Lyrae stars along the southern Galactic plane. Here, we present the picture of the Milky Way’s thin disk drawn with the Cepheids and the view of the Galactic old population that emerges from the set of known RR Lyrae stars.


1973 ◽  
Vol 21 ◽  
pp. 51-67 ◽  
Author(s):  
L. Rosino

RR Lyrae variables play a prominent role in many of the problems of globular clusters, and from several points of view. In the first place they can be considered as pretty good indicators of population and distance; although they do not form a completely homogeneous set of stars, the knowledge of their mean absolute magnitude gives a powerful means of establishing distances within and outside the Galaxy, and hence of determining the form and size of the Galaxy itself. Moreover, the number of RR Lyrae stars in clusters, the relative frequency of RRc and RRab, types, the length of the transition periods, the array of colors, when correctly interpreted, give important information on the degree of evolution, age and chemical composition of the clusters. Placed as they are in a peculiar region of the H — R diagram of Population II, the RR Lyr variables can be used as a good test of the theories of advanced evolution or the models of pulsating stars.


2012 ◽  
Vol 341 (1) ◽  
pp. 51-56 ◽  
Author(s):  
V. Ripepi ◽  
M. I. Moretti ◽  
G. Clementini ◽  
M. Marconi ◽  
M. R. Cioni ◽  
...  

2019 ◽  
Vol 623 ◽  
pp. A117 ◽  
Author(s):  
Pierre Kervella ◽  
Alexandre Gallenne ◽  
Nancy Remage Evans ◽  
Laszlo Szabados ◽  
Frédéric Arenou ◽  
...  

Context. The multiplicity of classical Cepheids (CCs) and RR Lyrae stars (RRLs) is still imperfectly known, particularly for RRLs. Aims. In order to complement the close-in short orbital period systems presented in Paper I, our aim is to detect the wide, spatially resolved companions of the targets of our reference samples of Galactic CCs and RRLs. Methods. Angularly resolved common proper motion pairs were detected using a simple progressive selection algorithm to separate the most probable candidate companions from the unrelated field stars. Results. We found 27 resolved, high probability gravitationally bound systems with CCs out of 456 examined stars, and one unbound star embedded in the circumstellar dusty nebula of the long-period Cepheid RS Pup. We found seven spatially resolved, probably bound systems with RRL primaries out of 789 investigated stars, and 22 additional candidate pairs. We report in particular new companions of three bright RRLs: OV And (companion of F4V spectral type), RR Leo (M0V), and SS Oct (K2V). In addition, we discovered resolved companions of 14 stars that were likely misclassified as RRLs. Conclusions. The detection of resolved non-variable companions around CCs and RRLs facilitates the validation of their Gaia DR2 parallaxes. The possibility to conduct a detailed analysis of the resolved coeval companions of CCs and old population RRLs will also be valuable to progress on our understanding of their evolutionary path.


Sign in / Sign up

Export Citation Format

Share Document