scholarly journals Phase Lag of Classical Cepheids and RR Lyrae Stars

2000 ◽  
Vol 176 ◽  
pp. 235-236 ◽  
Author(s):  
W. Ogloza ◽  
P. Moskalik ◽  
S. Kanbur

AbstractIt is a well-known property of Cepheids and RR Lyrae variables that their maximum brightness approximately coincides with the maximum expansion velocity. A more detailed investigation (Carson & Stothers 1984; Simon 1984) has shown that the velocity curve is in fact slightly retarded with the respect to the light variations. In this report we discuss the trends in the observed phase lag for an extensive sample of classical Cepheids and RRab variables.

2004 ◽  
Vol 193 ◽  
pp. 502-505
Author(s):  
M. Marconi ◽  
G. Bono ◽  
T.E. Nordgren

Abstract We present the period-radius relations predicted by nonlinear convective models of Classical Cepheids and RR Lyrae stars. For the former variables we show that the metallicity effect is negligible for both fundamental and first overtone pulsators. This confirms the power of the period-radius relation to estimate Cepheid radii and in turn distances. For the latter class of variables we show that the dispersion of the period-radius relation of both fundamental and first overtone pulsators is significantly reduced once the metallicity dependence is taken into account. This provides a robust method to evaluate the radius of observed RR Lyrae with measured period and metal abundance.


2018 ◽  
Vol 14 (S344) ◽  
pp. 86-89
Author(s):  
Anna M. Jacyszyn-Dobrzeniecka ◽  

AbstractWe present a three-dimensional structure of the Magellanic System using over 9 000 Classical Cepheids and almost 23 000 RR Lyrae stars from the OGLE Collection of Variable Stars. Given the vast coverage of the OGLE-IV data and very high completeness of the sample, we were able to study the Magellanic System in great details.We very carefully studied the distribution of both types of pulsators in the Magellanic Bridge area. We show that there is no evident physical connection between the Clouds in RR Lyrae stars distribution. We only see the two extended structures overlapping. There are few classical Cepheids in the Magellanic Bridge area that seem to form a genuine connection between the Clouds. Their on-sky locations match very well young stars and neutral hydrogen density contours. We also present three-dimensional distribution of classical pulsators in both Magellanic Clouds.


2019 ◽  
Vol 623 ◽  
pp. A116 ◽  
Author(s):  
Pierre Kervella ◽  
Alexandre Gallenne ◽  
Nancy Remage Evans ◽  
Laszlo Szabados ◽  
Frédéric Arenou ◽  
...  

Context. Classical Cepheids (CCs) and RR Lyrae stars (RRLs) are important classes of variable stars used as standard candles to estimate galactic and extragalactic distances. Their multiplicity is imperfectly known, particularly for RRLs. Astoundingly, to date only one RRL has convincingly been demonstrated to be a binary, TU UMa, out of tens of thousands of known RRLs. Aims. Our aim is to detect the binary and multiple stars present in a sample of Milky Way CCs and RRLs. Methods. In the present article, we combine the HIPPARCOS and Gaia DR2 positions to determine the mean proper motion of the targets, and we search for proper motion anomalies (PMa) caused by close-in orbiting companions. Results. We identify 57 CC binaries from PMa out of 254 tested stars and 75 additional candidates, confirming the high binary fraction of these massive stars. For 28 binary CCs, we determine the companion mass by combining their spectroscopic orbital parameters and astrometric PMa. We detect 13 RRLs showing a significant PMa out of 198 tested stars, and 61 additional candidates. Conclusions. We determine that the binary fraction of CCs is likely above 80%, while that of RRLs is at least 7%. The newly detected systems will be useful to improve our understanding of their evolutionary states. The discovery of a significant number of RRLs in binary systems also resolves the long-standing mystery of their extremely low apparent binary fraction.


1979 ◽  
Vol 46 ◽  
pp. 467-473
Author(s):  
Yoji Osaki

The Beta Cephei (or Beta Canis Majoris) stars are a small group of pulsating variables of early spectral type. There are some 20 “classical” β Cephei stars, and several new or suspected variables in this group. The classical β Cephei stars are confined in a narrow “instability strip” which lies about 1 mag above and nearly parallel to the zero-age main-sequence of massive stars (M~10-20 M⊙). They are thus located far away from other well-known pulsating variables such as classical Cepheids and RR Lyrae stars in the HR diagram.


2019 ◽  
Vol 14 (S353) ◽  
pp. 1-5
Author(s):  
Pawel Pietrukowicz

AbstractClassical Cepheids and RR Lyrae-type variable stars are widely-used tracers of young (< 300 Myr) and old (> 10 Gyr) stellar populations, respectively. These stars also serve as distance indicators allowing for Galactic structure studies. Robust detection of pulsating variables requires precise and relatively frequent observations over several years. Recently, the OGLE survey has discovered nearly 1,300 new genuine classical Cepheids and 15,000 RR Lyrae stars along the southern Galactic plane. Here, we present the picture of the Milky Way’s thin disk drawn with the Cepheids and the view of the Galactic old population that emerges from the set of known RR Lyrae stars.


2012 ◽  
Vol 341 (1) ◽  
pp. 51-56 ◽  
Author(s):  
V. Ripepi ◽  
M. I. Moretti ◽  
G. Clementini ◽  
M. Marconi ◽  
M. R. Cioni ◽  
...  

2019 ◽  
Vol 623 ◽  
pp. A117 ◽  
Author(s):  
Pierre Kervella ◽  
Alexandre Gallenne ◽  
Nancy Remage Evans ◽  
Laszlo Szabados ◽  
Frédéric Arenou ◽  
...  

Context. The multiplicity of classical Cepheids (CCs) and RR Lyrae stars (RRLs) is still imperfectly known, particularly for RRLs. Aims. In order to complement the close-in short orbital period systems presented in Paper I, our aim is to detect the wide, spatially resolved companions of the targets of our reference samples of Galactic CCs and RRLs. Methods. Angularly resolved common proper motion pairs were detected using a simple progressive selection algorithm to separate the most probable candidate companions from the unrelated field stars. Results. We found 27 resolved, high probability gravitationally bound systems with CCs out of 456 examined stars, and one unbound star embedded in the circumstellar dusty nebula of the long-period Cepheid RS Pup. We found seven spatially resolved, probably bound systems with RRL primaries out of 789 investigated stars, and 22 additional candidate pairs. We report in particular new companions of three bright RRLs: OV And (companion of F4V spectral type), RR Leo (M0V), and SS Oct (K2V). In addition, we discovered resolved companions of 14 stars that were likely misclassified as RRLs. Conclusions. The detection of resolved non-variable companions around CCs and RRLs facilitates the validation of their Gaia DR2 parallaxes. The possibility to conduct a detailed analysis of the resolved coeval companions of CCs and old population RRLs will also be valuable to progress on our understanding of their evolutionary path.


2012 ◽  
Vol 8 (S289) ◽  
pp. 195-202
Author(s):  
Alexey S. Rastorguev ◽  
Andrey K. Dambis ◽  
Marina V. Zabolotskikh ◽  
Leonid N. Berdnikov ◽  
Natalia A. Gorynya

AbstractThe Baade–Becker–Wesselink (BBW) method remains one of most often used tools to derive a full set of Cepheid astrophysical parameters. The surface brightness version of the BBW technique was preferentially used during the past few decades to calculate Cepheid radii and to improve period–luminosity–colour relations. Its implementation requires a priori knowledge of Cepheid reddening values. We propose a new version of the BBW technique, which allows one to independently determine the colour excess and the intrinsic colour of a radially pulsating star, in addition to its radius, luminosity and distance. The new technique is a generalization of the Balona light curve-modelling approach. The method also allows calibration of the function F(CI0) = BC(CI0) + 10 log [Teff (CI0)] for the class of pulsating stars considered. We apply this technique to a number of classical Cepheids with very accurate light and radial-velocity curves. The new technique can also be applied to other pulsating variables, e.g., RR Lyrae stars. We also discuss the possible dependence of the projection factor on the pulsation phase.


2017 ◽  
Vol 605 ◽  
pp. A79 ◽  
Author(s):  
◽  
G. Clementini ◽  
L. Eyer ◽  
V. Ripepi ◽  
M. Marconi ◽  
...  

Context. Parallaxes for 331 classical Cepheids, 31 Type II Cepheids, and 364 RR Lyrae stars in common between Gaia and the Hipparcos and Tycho-2 catalogues are published in Gaia Data Release 1 (DR1) as part of the Tycho-Gaia Astrometric Solution (TGAS). Aims. In order to test these first parallax measurements of the primary standard candles of the cosmological distance ladder, which involve astrometry collected by Gaia during the initial 14 months of science operation, we compared them with literature estimates and derived new period-luminosity (PL), period-Wesenheit (PW) relations for classical and Type II Cepheids and infrared PL, PL-metallicity (PLZ), and optical luminosity-metallicity (MV-[Fe/H]) relations for the RR Lyrae stars, with zero points based on TGAS. Methods. Classical Cepheids were carefully selected in order to discard known or suspected binary systems. The final sample comprises 102 fundamental mode pulsators with periods ranging from 1.68 to 51.66 days (of which 33 with σϖ/ϖ< 0.5). The Type II Cepheids include a total of 26 W Virginis and BL Herculis stars spanning the period range from 1.16 to 30.00 days (of which only 7 with σϖ/ϖ< 0.5). The RR Lyrae stars include 200 sources with pulsation period ranging from 0.27 to 0.80 days (of which 112 with σϖ/ϖ< 0.5). The new relations were computed using multi-band (V,I,J,Ks) photometry and spectroscopic metal abundances available in the literature, and by applying three alternative approaches: (i) linear least-squares fitting of the absolute magnitudes inferred from direct transformation of the TGAS parallaxes; (ii) adopting astrometry-based luminosities; and (iii) using a Bayesian fitting approach. The last two methods work in parallax space where parallaxes are used directly, thus maintaining symmetrical errors and allowing negative parallaxes to be used. The TGAS-based PL,PW,PLZ, and MV− [Fe/H] relations are discussed by comparing the distance to the Large Magellanic Cloud provided by different types of pulsating stars and alternative fitting methods. Results. Good agreement is found from direct comparison of the parallaxes of RR Lyrae stars for which both TGAS and HST measurements are available. Similarly, very good agreement is found between the TGAS values and the parallaxes inferred from the absolute magnitudes of Cepheids and RR Lyrae stars analysed with the Baade-Wesselink method. TGAS values also compare favourably with the parallaxes inferred by theoretical model fitting of the multi-band light curves for two of the three classical Cepheids and one RR Lyrae star, which were analysed with this technique in our samples. The K-band PL relations show the significant improvement of the TGAS parallaxes for Cepheids and RR Lyrae stars with respect to the Hipparcos measurements. This is particularly true for the RR Lyrae stars for which improvement in quality and statistics is impressive. Conclusions. TGAS parallaxes bring a significant added value to the previous Hipparcos estimates. The relations presented in this paper represent the first Gaia-calibrated relations and form a work-in-progress milestone report in the wait for Gaia-only parallaxes of which a first solution will become available with Gaia Data Release 2 (DR2) in 2018.


Sign in / Sign up

Export Citation Format

Share Document