scholarly journals A 22μm selected sample from WISE and SDSS spectra catalogs

2012 ◽  
Vol 8 (S292) ◽  
pp. 376-376
Author(s):  
Xiao-Qing Wen ◽  
Hong-Wei Yin

AbstractWe cross-matched Wide-field Infrared Survey Explorer sources with the Sloan Digital Sky Survey galaxy spectroscopic catalog within 6 arcsec to produce 182798 galaxies with 22 μm signal to noise > 3. The different redshift bins of the sample show that the rest-frame 22μm luminosities increase with redshift, for rest-frame 22μm luminosities in the range of 106 − 1012 L⊙. The infrared sample is located in the blue sequence. The Seyfert fraction increases with redshift more obviously in the IR sample than in an optical control sample. The Seyfert fraction increases significantly with increasing rest-frame 22 μm luminosity below 1011 L⊙.

2018 ◽  
Author(s):  
◽  
Marat Musin

In this dissertation, I aim to study the evolution of galaxies over the last 6 Gyr by measuring the growth of the global stellar mass density (GSMD) since z = 0.8. My work combines the datasets from two very large surveys, namely, the optical data from the Sloan Digital Sky Survey (SDSS) Stripe 82 and the infrared data from the Wide-field Infrared Survey Explorer (WISE), and constructs a unique catalog of galaxies that have their spectral energy distributions (SEDs) measured consistently from 0.3 to 5 [mu]m in seven bands. This catalog, the largest of its kind, contains 9 million galaxies in [about] 300 deg[2] , will have a wide range of applications beyond the scope of this thesis. Extending galaxy SED measurements to restframe near-IR has two significant advantages: (1) dust extinction can be better handled, and (2) emissions from low-mass stars, which are the major contributors to a galaxy's stellar mass, can be better measured. WISE was the only mission to date that provided all-sky IR data that are deep enough for galaxy evolution studies out to z [approximately] 1 (sampling restframe K-band). The only wide-field optical survey data that could match WISE depths are those from the SDSS Stripe 82 over [about] 300 deg2 . The synergy of the two is therefore natural. The implementation, however, is of tremendous difficulty. This is mainly because of the vastly different spatial resolutions between SDSS and WISE. To overcome this problem, we take an approach that is often referred to as "morphological template fitting", i.e., using the high-resolution image to define the morphological template of the galaxy in question, and de-convolving its light profile in the low-resolution image accordingly. In this way, we obtain the SED measurements over the entire 0.3-5[mu]m range in the most self-consistent manner. Using this SED catalog as the basis, we derive photometric redshifts and stellar masses for all the 9 million galaxies that span z = 0-0.8. This provides us an unprecedented statistics when deriving galaxy stellar mass functions (MFs) and GSMD over multiple redshift bins. Some preliminary results are discussed. As a by-product of our morphological template fitting process, an interesting population of objects called "WISE Optical Dropouts" ("WoDrops" for short) are discovered. These objects are significant detections in WISE data but are invisible in all the SDSS Stripe 82 data. Their nature remains a mystery up to this point. Among all possibilities, the only viable interpretation is that they are very high-mass galaxies with very high dust extinctions. To reveal their nature, future observations at larger facilities will be necessary.


2013 ◽  
Vol 9 (S304) ◽  
pp. 56-60
Author(s):  
Robert Nikutta ◽  
Maia Nenkova ◽  
Željko Ivezić ◽  
Nicholas Hunt-Walker ◽  
Moshe Elitzur

AbstractThe Wide-field Infrared Survey Explorer (WISE) has scanned the entire sky with unprecedented sensitivity in four infrared bands, at 3.4, 4.6, 12, and 22 μm. The WISE Point Source Catalog contains more than 560 million objects, among them hundreds of thousands of galaxies with Active Nuclei (AGN). While type 1 AGN, owing to their bright and unobscured nature, are easy to detect and constitute a rather complete and unbiased sample, their type 2 counterparts, postulated by AGN unification, are not as straightforward to identify. Matching the WISE catalog with known QSOs in the Sloan Digital Sky Survey we confirm previous identification of the type 1 locus in the WISE color space. Using a very large database of the popular Clumpy torus models, we find the colors of the putative type 2 counterparts, and also, for the first time, predict their number vs. flux relation that can be expected to be observed in any given WISE color range. This will allow us to put statistically very significant constraints on the torus parameters. Our results are a successful test of the AGN unification scheme.


2014 ◽  
Vol 441 (2) ◽  
pp. 1297-1304 ◽  
Author(s):  
Shobita Satyapal ◽  
Sara L. Ellison ◽  
William McAlpine ◽  
Ryan C. Hickox ◽  
David R. Patton ◽  
...  

2016 ◽  
Vol 12 (S323) ◽  
pp. 392-393
Author(s):  
Zhimin Zhou

AbstractStar formation rate (SFR) is one of the most important diagnostics in understanding the evolution of galaxies across cosmic times. In order to explore the possibility of using the optical u-band luminosities to estimate SFRs of galaxies, we show the correlations between u band, Hα and infrared luminosities by combing the data from the South Galactic Cap u band Sky Survey (SCUSS) with the Sloan Digital Sky Survey (SDSS) and the Wide-field Infrared Survey Explorer (WISE). We derive the u versus Hα relation and the u and 12 μm relations to calibrate the u-band luminosity as an SFR indicator.


2019 ◽  
Vol 15 (S359) ◽  
pp. 441-443
Author(s):  
F. S. Lohmann ◽  
A. Schnorr-Müller ◽  
M. Trevisan ◽  
R. Riffel ◽  
N. Mallmann ◽  
...  

AbstractObservations at high redshift reveal that a population of massive, quiescent galaxies (called red nuggets) already existed 10 Gyr ago. These objects undergo a significant size evolution over time, likely due to minor mergers. In this work we present an analysis of local massive compact galaxies to assess if their properties are consistent with what is expected for unevolved red nuggets (relic galaxies). Using integral field spectroscopy (IFS) data from the MaNGA survey from the Sloan Digital Sky Survey (SDSS), we characterized the kinematics and properties of stellar populations of massive compact galaxies, and find that these objects exhibit, on average, a higher rotational support than a control sample of average sized early-type galaxies. This is in agreement with a scenario in which these objects have a quiet accretion history, rendering them candidates for relic galaxies.


2020 ◽  
Vol 494 (3) ◽  
pp. 3061-3079 ◽  
Author(s):  
D J Rosario ◽  
V A Fawcett ◽  
L Klindt ◽  
D M Alexander ◽  
L K Morabito ◽  
...  

ABSTRACT Red quasi-stellar objects (QSOs) are a subset of the luminous end of the cosmic population of active galactic nuclei (AGNs), most of which are reddened by intervening dust along the line of sight towards their central engines. In recent work from our team, we developed a systematic technique to select red QSOs from the Sloan Digital Sky Survey, and demonstrated that they have distinctive radio properties using the Faint Images of the Radio Sky at Twenty centimetres radio survey. Here we expand our study using low-frequency radio data from the LOFAR Two-metre Sky Survey (LoTSS). With the improvement in depth that LoTSS offers, we confirm key results: Compared to a control sample of normal ‘blue’ QSOs matched in redshift and accretion power, red QSOs have a higher radio detection rate and a higher incidence of compact radio morphologies. For the first time, we also demonstrate that these differences arise primarily in sources of intermediate radio loudness: Radio-intermediate red QSOs are × 3 more common than typical QSOs, but the excess diminishes among the most radio-loud systems and the most radio-quiet systems in our study. We develop Monte Carlo simulations to explore whether differences in star formation could explain these results, and conclude that, while star formation is an important source of low-frequency emission among radio-quiet QSOs, a population of AGN-driven compact radio sources is the most likely cause for the distinct low-frequency radio properties of red QSOs. Our study substantiates the conclusion that fundamental differences must exist between the red and normal blue QSO populations.


2019 ◽  
Vol 485 (3) ◽  
pp. 3169-3184 ◽  
Author(s):  
Vaishali Parkash ◽  
Michael J I Brown ◽  
T H Jarrett ◽  
A Fraser-McKelvie ◽  
M E Cluver

Abstract We present a sample of 91 H i galaxies with little or no star formation, and discuss the analysis of the integral field unit (IFU) spectra of 28 of these galaxies. We identified H i galaxies from the H i Parkes All-Sky Survey Catalog (HICAT) with Wide-field Infrared Survey Explorer (WISE) colours consistent with low specific star formation (<10−10.4 yr−1), and obtained optical IFU spectra with the Wide-Field Spectrograph (WiFeS). Visual inspection of the PanSTARRS, Dark Energy Survey, and Carnegie-Irvine imaging of 62 galaxies reveals that at least 32 galaxies in the sample have low levels of star formation, primarily in arms/rings. New IFU spectra of 28 of these galaxies reveals 3 galaxies with central star formation, 1 galaxy with low-ionization nuclear emission-line regions (LINERs), 20 with extended low-ionization emission-line regions (LIERs), and 4 with high excitation Seyfert (Sy) emission. From the spectroscopic analysis of H i selected galaxies with little star formation, we conclude that 75 per cent of this population are LINERs/LIERs.


2013 ◽  
Vol 22 (2) ◽  
Author(s):  
Xin-Fa Deng ◽  
Fuyang Zhang

AbstractFrom the apparent magnitude-limited the Main galaxy sample of the Sloan Digital Sky Survey Data Release 7, we construct a paired galaxy sample and a control sample without close companions with the projected separations


2007 ◽  
Vol 134 (5) ◽  
pp. 1938-1951 ◽  
Author(s):  
Matthew G. Coleman ◽  
Katrin Jordi ◽  
Hans-Walter Rix ◽  
Eva K. Grebel ◽  
Andreas Koch

Sign in / Sign up

Export Citation Format

Share Document