scholarly journals Young stellar disks formed by the collision of a molecular cloud with a circumnuclear disk at the Galactic center

2013 ◽  
Vol 9 (S303) ◽  
pp. 185-187 ◽  
Author(s):  
C. Alig ◽  
M. Schartmann ◽  
A. Burkert ◽  
K. Dolag

AbstractWe suggest a new formation mechanism for the inclined, sub-parsec scale and counterrotating stellar disks observed around the central black hole in the Milky Way Galactic center. The simulation of a single molecular cloud crashing into a circumnuclear ring of gas leads to the inflow of multiple streams of gas towards the central parsec region. The time delayed arrival of those streams forms multiple, sub-parsec scale accretion disks, with angular momentum depending on the ratio of cloud and circumnuclear ring material. These accretion disks could then be the progenitors which fragmented into the observed stellar disks. A similar event might have also led to the creation of the so-called minispiral in the Galactic center.

1998 ◽  
Vol 184 ◽  
pp. 433-434
Author(s):  
A. M. Ghez ◽  
B. L. Klein ◽  
C. McCabe ◽  
M. Morris ◽  
E. E. Becklin

Although the notion that the Milky Way galaxy contains a supermassive central black hole has been around for more than two decades, it has been difficult to prove that one exists. The challenge is to assess the distribution of matter in the few central parsecs of the Galaxy. Assuming that gravity is the dominant force, the motion of the stars and gas in the vicinity of the putative black hole offers a robust method for accomplishing this task, by revealing the mass interior to the radius of the objects studied. Thus objects located closest to the Galactic Center provide the strongest constraints on the black hole hypothesis.


2016 ◽  
Vol 11 (S322) ◽  
pp. 129-132
Author(s):  
Lydia Moser ◽  
Álvaro Sánchez-Monge ◽  
Andreas Eckart ◽  
Miguel A. Requena-Torres ◽  
Macarena García-Marin ◽  
...  

AbstractWe report serendipitous detections of line emission with ALMA in band 3, 6, and 7 in the central parsec of the Galactic center at an up to now highest resolution (<0.7″). Among the highlights are the very first and highly resolved images of sub-mm molecular emission of CS, H13CO+, HC3N, SiO, SO, C2H, and CH3OH in the immediate vicinity (~1″ in projection) of Sgr A* and in the circumnuclear disk (CND). The central association (CA) of molecular clouds shows three times higher CS/X (X: any other observed molecule) luminosity ratios than the CND suggesting a combination of higher excitation - by a temperature gradient and/or IR-pumping - and abundance enhancement due to UV- and/or X-ray emission. We conclude that the CA is closer to the center than the CND is and could be an infalling clump consisting of denser cloud cores embedded in diffuse gas. Moreover, we identified further regions in and outside the CND that are ideally suited for future studies in the scope of hot/cold core and extreme PDR/XDR chemistry and consequent star formation in the central few parsecs.


2006 ◽  
Vol 2 (S238) ◽  
pp. 415-416
Author(s):  
K. Mužić ◽  
A. Eckart ◽  
R. Schödel ◽  
L. Meyer ◽  
A. Zensus

AbstractWe present the proper motion study of the thin filaments observed in L'-band (3.8 μm) adaptive optics images of the central parsec of the Milky Way. Observed filaments are associated with the mini-spiral and, in some cases, with stars. They can be interpreted as shock fronts formed by the interaction of a central wind with the mini-spiral or extended dusty stellar envelopes.


2006 ◽  
Vol 2 (S238) ◽  
pp. 337-338
Author(s):  
Tapan K. Chatterjee

AbstractSurrounding the Galactic center is a molecular cloud with a central black hole. This raises the question as to how the hole was formed. While clouds containing HCN are circulating around the Galactic center, they do not all move at the same speed and so collide mutually and should make a more uniform motion and distribution after a period of some 100 kyrs (e.g., Ekers, van Gorkom, Schwartz et al. 1983). Hence some very energetic phenomena must have occurred within that period.


Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
Xiang Cai ◽  
Jonathan H. Jiang ◽  
Kristen A. Fahy ◽  
Yuk L. Yung

In the field of astrobiology, the precise location, prevalence, and age of potential extraterrestrial intelligence (ETI) have not been explicitly explored. Here, we address these inquiries using an empirical galactic simulation model to analyze the spatial–temporal variations and the prevalence of potential ETI within the Galaxy. This model estimates the occurrence of ETI, providing guidance on where to look for intelligent life in the Search for ETI (SETI) with a set of criteria, including well-established astrophysical properties of the Milky Way. Further, typically overlooked factors such as the process of abiogenesis, different evolutionary timescales, and potential self-annihilation are incorporated to explore the growth propensity of ETI. We examine three major parameters: (1) the likelihood rate of abiogenesis (λA); (2) evolutionary timescales (Tevo); and (3) probability of self-annihilation of complex life (Pann). We found Pann to be the most influential parameter determining the quantity and age of galactic intelligent life. Our model simulation also identified a peak location for ETI at an annular region approximately 4 kpc from the galactic center around 8 billion years (Gyrs), with complex life decreasing temporally and spatially from the peak point, asserting a high likelihood of intelligent life in the galactic inner disk. The simulated age distributions also suggest that most of the intelligent life in our galaxy are young, thus making observation or detection difficult.


2011 ◽  
Vol 28 (2) ◽  
pp. 171-176 ◽  
Author(s):  
P. P. Kronberg ◽  
K. J. Newton-McGee

AbstractWe apply a new, expanded compilation of extragalactic source Faraday rotation measures (RM) to investigate the broad underlying magnetic structure of the Galactic disk at latitudes ∣b∣ ≲15° over all longitudes l, where our total number of RMs is comparable to those in the combined Canadian Galactic Plane Survey (CGPS) at ∣b∣ < 4° and the Southern Galactic Plane (SGPS) ∣b∣<1.5°. We report newly revealed, remarkably coherent patterns of RM at ∣b∣≲15° from l∼270° to ∼90° and RM(l) features of unprecedented clarity that replicate in l with opposite sign on opposite sides of the Galactic center. They confirm a highly patterned bisymmetric field structure toward the inner disc, an axisymmetic pattern toward the outer disc, and a very close coupling between the CGPS/SGPS RMs at ∣b∣≲3° (‘mid-plane’) and our new RMs up to ∣b∣∼15° (‘near-plane’). Our analysis also shows the vertical height of the coherent component of the disc field above the Galactic disc's mid-plane—to be ∼1.5 kpc out to ∼6 kpc from the Sun. This identifies the approximate height of a transition layer to the halo field structure. We find no RM sign change across the plane within ∣b∣∼15° in any longitude range. The prevailing disc field pattern and its striking degree of large-scale ordering confirm that our side of the Milky Way has a very organized underlying magnetic structure, for which the inward spiral pitch angle is 5.5°±1° at all ∣b∣ up to ∼12° in the inner semicircle of Galactic longitudes. It decreases to ∼0° toward the anticentre.


2013 ◽  
Vol 9 (S303) ◽  
pp. 464-466
Author(s):  
M. Rickert ◽  
F. Yusef-Zadeh ◽  
C. Brogan

AbstractWe analyze a high resolution (114″ × 60″) 74 MHz image of the Galactic center taken with the Very Large Array (VLA). We have identified several absorption and emission features in this region, and we discuss preliminary results of two Galactic center sources: the Sgr D complex (G1.1–0.1) and the Galactic center lobe (GCL).The 74 MHz image displays the thermal and nonthermal components of Sgr D and we argue the Sgr D supernova remnant (SNR) is consistent with an interaction with a nearby molecular cloud and the location of the Sgr D Hii region on the near side of the Galactic center. The image also suggests that the emission from the eastern side of the GCL contains a mixture of both thermal and nonthermal sources, whereas the western side is primarily thermal.


Author(s):  
Miranda Yew ◽  
Miroslav D. Filipović ◽  
Quentin Roper ◽  
Jordan D. Collier ◽  
Evan J. Crawford ◽  
...  

AbstractWe present a multi-frequency study of the intermediate spiral SAB(r)bc type galaxy NGC 6744, using available data from the Chandra X-Ray telescope, radio continuum data from the Australia Telescope Compact Array and Murchison Widefield Array, and Wide-field Infrared Survey Explorer infrared observations. We identify 117 X-ray sources and 280 radio sources. Of these, we find nine sources in common between the X-ray and radio catalogues, one of which is a faint central black hole with a bolometric radio luminosity similar to the Milky Way’s central black hole. We classify 5 objects as supernova remnant (SNR) candidates, 2 objects as likely SNRs, 17 as H ii regions, 1 source as an AGN; the remaining 255 radio sources are categorised as background objects and one X-ray source is classified as a foreground star. We find the star-formation rate (SFR) of NGC 6744 to be in the range 2.8–4.7 M⊙~yr − 1 signifying the galaxy is still actively forming stars. The specific SFR of NGC 6744 is greater than that of late-type spirals such as the Milky Way, but considerably less that that of a typical starburst galaxy.


Author(s):  
Masato Tsuboi ◽  
Yoshimi Kitamura ◽  
Kenta Uehara ◽  
Takahiro Tsutsumi ◽  
Ryosuke Miyawaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document