scholarly journals Supernovae, the Accelerating Cosmos, and Dark Energy

2012 ◽  
Vol 10 (H16) ◽  
pp. 17-17
Author(s):  
Brian Schmidt

AbstractType Ia supernovae remain one of Astronomy's most precise tools for measuring distances in the Universe. I describe the cosmological application of these stellar explosions, and chronicle how they were used to discover an accelerating Universe in 1998 - an observation which is most simply explained if more than 70% of the Universe is made up of some previously undetected form of ‘Dark Energy’. Over the intervening 13 years, a variety of experiments have been completed, and even more proposed to better constrain the source of the acceleration. I review the range of experiments, describing the current state of our understanding of the observed acceleration, and speculate about future progress in understanding Dark Energy.

2005 ◽  
Vol 192 ◽  
pp. 525-533
Author(s):  
Weidong Li ◽  
Alexei V. Filippenko

SummaryObservations of Type Ia supernovae (SNe Ia) reveal correlations between their luminosities and light-curve shapes, and between their spectral sequence and photometric sequence. Assuming SNe Ia do not evolve at different redshifts, the Hubble diagram of SNe Ia may indicate an accelerating Universe, the signature of a cosmological constant or other forms of dark energy. Several studies raise concerns about the evolution of SNe Ia (e.g., the peculiarity rate, the rise time, and the color of SNe Ia at different redshifts), but all these studies suffer from the difficulties of obtaining high-quality spectroscopy and photometry for SNe Ia at high redshifts. There are also some troubling cases of SNe Ia that provide counter examples to the observed correlations, suggesting that a secondary parameter is necessary to describe the whole SN Ia family. Understanding SNe Ia both observationally and theoretically will be the key to boosting confidence in the SN Ia cosmological results.


2007 ◽  
Vol 16 (10) ◽  
pp. 1573-1579
Author(s):  
CHENGWU ZHANG ◽  
LIXIN XU ◽  
YONGLI PING ◽  
HONGYA LIU

We use a parameterized equation of state (EOS) of dark energy to a 5D Ricci-flat cosmological solution and suppose the universe contains two major components: dark matter and dark energy. Using the recent observational datasets: the latest 182 type Ia Supernovae Gold data, the three-year WMAP CMB shift parameter and the SDSS baryon acoustic peak, we obtain the best fit values of the EOS and two major components' evolution. We find that the best fit EOS crosses -1 in the near past where z ≃ 0.07, the present best fit value of wx(0) < -1 and for this model, the universe experiences the acceleration at about z ≃ 0.5.


2017 ◽  
Vol 474 (3) ◽  
pp. 3516-3522 ◽  
Author(s):  
Yu-Yang Wang ◽  
F Y Wang

Abstract In this paper, we study an anisotropic universe model with Bianchi-I metric using Joint light-curve analysis (JLA) sample of Type Ia supernovae (SNe Ia). Because light-curve parameters of SNe Ia vary with different cosmological models and SNe Ia samples, we fit the SNe Ia light-curve parameters and cosmological parameters simultaneously employing Markov chain Monte Carlo method. Therefore, the results on the amount of deviation from isotropy of the dark energy equation of state (δ), and the level of anisotropy of the large-scale geometry (Σ0) at present, are totally model-independent. The constraints on the skewness and cosmic shear are −0.101 &lt; δ &lt; 0.071 and −0.007 &lt; Σ0 &lt; 0.008. This result is consistent with a standard isotropic universe (δ = Σ0 = 0). However, a moderate level of anisotropy in the geometry of the Universe and the equation of state of dark energy, is allowed. Besides, there is no obvious evidence for a preferred direction of anisotropic axis in this model.


2011 ◽  
Vol 7 (S281) ◽  
pp. 17-20
Author(s):  
M. V. Pruzhinskaya ◽  
E. S. Gorbovskoy ◽  
V. M. Lipunov

AbstractA special class of Type Ia supernovae that is not subject to ordinary and additional intragalactic gray absorption and chemical evolution has been identified. Analysis of the Hubble diagrams constructed for these supernovae confirms the accelerated expansion of the Universe irrespective of the chemical evolution and possible gray absorption in galaxies.


2004 ◽  
Vol 13 (04) ◽  
pp. 669-693 ◽  
Author(s):  
R. COLISTETE ◽  
J. C. FABRIS ◽  
S. V. B. GONÇALVES ◽  
P. E. DE SOUZA

The type Ia supernovae observational data are used to estimate the parameters of a cosmological model with cold dark matter and the Chaplygin gas. This exotic gas, which is characterized by a negative pressure varying with the inverse of density, represents in this model the dark energy responsible for the acceleration of the Universe. The Chaplygin gas model depends essentially on four parameters: the Hubble constant, the velocity of the sound of the Chaplygin gas, the curvature of the Universe and the fraction density of the Chaplygin gas and the cold dark matter. The Bayesian parameter estimation yields [Formula: see text] and [Formula: see text]. These and other results indicate that a Universe completely dominated by the Chaplygin gas is favoured, what reinforces the idea that the Chaplygin gas may unify the description for dark matter and dark energy, at least as the type Ia supernovae data are concerned. A closed and accelerating Universe is also favoured. The Bayesian statistics indicates that the Chaplygin gas model is more likely than the standard cosmological constant (ΛCDM) model at 55.3% confidence level when an integration on all free parameters is performed. Assuming the spatially flat curvature, this percentage mounts to 65.3%. On the other hand, if the density of dark matter is fixed at zero value, the Chaplygin gas model becomes more preferred than the ΛCDM model at 91.8% confidence level. Finally, the hypothesis of flat Universe and baryonic matter (Ωb0=0.04) implies a Chaplygin gas model preferred over the ΛCDM at a confidence level of 99.4%.


2015 ◽  
Vol 24 (14) ◽  
pp. 1530029 ◽  
Author(s):  
Xiangcun Meng ◽  
Yan Gao ◽  
Zhanwen Han

Type Ia supernovae (SNe Ia) luminosities can be corrected in order to render them useful as standard candles that are able to probe the expansion history of the universe. This technique was successfully applied to discover the present acceleration of the universe. As the number of SNe Ia observed at high redshift increases and analysis techniques are perfected, people aim to use this technique to probe the equation-of-state of the dark energy (EOSDE). Nevertheless, the nature of SNe Ia progenitors remains controversial and concerns persist about possible evolution effects that may be larger and harder to characterize than the more obvious statistical uncertainties.


2005 ◽  
Vol 20 (14) ◽  
pp. 3121-3123 ◽  
Author(s):  
◽  
Brenna Flaugher

Dark Energy is the dominant constituent of the universe and we have little understanding of it. We describe a new project aimed at measuring the dark energy equation of state parameter, w, to a statistical precision of ~5% with four separate techniques. The survey will image 5000 deg2 in the southern sky and collect 300 million galaxies, 30,000 galaxy clusters, and 2000 Type Ia supernovae. The survey will be carried out using a new 3 deg2 mosaic camera mounted at the prime focus of the 4m Blanco telescope at CTIO.


2019 ◽  
Vol 625 ◽  
pp. A15 ◽  
Author(s):  
I. Tutusaus ◽  
B. Lamine ◽  
A. Blanchard

Context. The cosmological concordance model (ΛCDM) is the current standard model in cosmology thanks to its ability to reproduce the observations. The first observational evidence for this model appeared roughly 20 years ago from the type-Ia supernovae (SNIa) Hubble diagram from two different groups. However, there has been some debate in the literature concerning the statistical treatment of SNIa, and their stature as proof of cosmic acceleration. Aims. In this paper we relax the standard assumption that SNIa intrinsic luminosity is independent of redshift, and examine whether it may have an impact on our cosmological knowledge and more precisely on the accelerated nature of the expansion of the universe. Methods. To maximise the scope of this study, we do not specify a given cosmological model, but we reconstruct the expansion rate of the universe through a cubic spline interpolation fitting the observations of the different cosmological probes: SNIa, baryon acoustic oscillations (BAO), and the high-redshift information from the cosmic microwave background (CMB). Results. We show that when SNIa intrinsic luminosity is not allowed to vary as a function of redshift, cosmic acceleration is definitely proven in a model-independent approach. However, allowing for redshift dependence, a nonaccelerated reconstruction of the expansion rate is able to fit, at the same level of ΛCDM, the combination of SNIa and BAO data, both treating the BAO standard ruler rd as a free parameter (not entering on the physics governing the BAO), and adding the recently published prior from CMB observations. We further extend the analysis by including the CMB data. In this case we also consider a third way to combine the different probes by explicitly computing rd from the physics of the early universe, and we show that a nonaccelerated reconstruction is able to nicely fit this combination of low- and high-redshift data. We also check that this reconstruction is compatible with the latest measurements of the growth rate of matter perturbations. We finally show that the value of the Hubble constant (H0) predicted by this reconstruction is in tension with model-independent measurements. Conclusions. We present a model-independent reconstruction of a nonaccelerated expansion rate of the universe that is able to fit all the main background cosmological probes nicely. However, the predicted value of H0 is in tension with recent direct measurements. Our analysis points out that a final reliable and consensual value for H0 is critical to definitively prove cosmic acceleration in a model-independent way.


Sign in / Sign up

Export Citation Format

Share Document