scholarly journals Stellar Yields of Rotating First Stars: Yields of Weak Supernovae and Abundances of Carbon-enhanced Hyper Metal Poor Stars

2014 ◽  
Vol 9 (S307) ◽  
pp. 82-87
Author(s):  
Koh Takahashi ◽  
Hideyuki Umeda ◽  
Takashi Yoshida

AbstractThe three most iron-poor stars known until now are also known to have peculiar enhancements of intermediate mass elements. Under the assumption that these iron-deficient stars reveal the nucleosynthesis result of Pop III stars, we show that a weak supernova model successfully reproduces the observed abundance patterns. Moreover, we show that the initial parameters of the progenitor, such as the initial masses and the rotational property, can be constrained by the model, since the stellar yields result from the nucleosynthesis in the outer region of the star, which is significantly affected by the initial parameters. The initial parameter of Pop III stars is of prime importance for the theoretical study of the early universe. Future observation will increase the number of such carbon enhanced iron-deficient stars, and the same analysis on the stars may give valuable information for the Pop III stars that existed in our universe.

2016 ◽  
Vol 25 (10) ◽  
pp. 1630025
Author(s):  
Ken’ichi Nomoto

After the big bang, production of heavy elements in the early universe takes place starting from the formation of the first (Pop III) stars, their evolution, and explosion. The Pop III supernova (SN) explosions have strong dynamical, thermal, and chemical feedback on the formation of subsequent stars and evolution of galaxies. However, the nature of Pop III stars/supernovae (SNe) have not been well-understood. The signature of nucleosynthesis yields of the first SN can be seen in the elemental abundance patterns observed in extremely metal-poor (EMP) stars. We show that the abundance patterns of EMP stars, e.g. the excess of C, Co, Zn relative to Fe, are in better agreement with the yields of hyper-energetic explosions (Hypernovae, (HNe)) rather than normal supernovae. We note the large variation of the abundance patterns of EMP stars propose that such a variation is related to the diversity of the GRB-SNe and posssibly superluminous supernovae (SLSNe). For example, the carbon-enhanced metal-poor (CEMP) stars may be related to the faint SNe (or dark HNe), which could be the explosions induced by relativistic jets. Finally, we examine the various mechanisms of SLSNe.


2020 ◽  
Vol 15 (S359) ◽  
pp. 238-242
Author(s):  
Mar Mezcua

AbstractDetecting the seed black holes from which quasars formed is extremely challenging; however, those seeds that did not grow into supermassive should be found as intermediate-mass black holes (IMBHs) of 100 – 105 M⊙ in local dwarf galaxies. The use of deep multiwavelength surveys has revealed that a population of actively accreting IMBHs (low-mass AGN) exists in dwarf galaxies at least out to z ˜3. The black hole occupation fraction of these galaxies suggests that the early Universe seed black holes formed from direct collapse of gas, which is reinforced by the possible flattening of the black hole-galaxy scaling relations at the low-mass end. This scenario is however challenged by the finding that AGN feedback can have a strong impact on dwarf galaxies, which implies that low-mass AGN in dwarf galaxies might not be the untouched relics of the early seed black holes. This has important implications for seed black hole formation models.


2008 ◽  
Author(s):  
Herbert H.B. Lau ◽  
Richard J. Stancliffe ◽  
Christopher A. Tout

2013 ◽  
Vol 9 (S296) ◽  
pp. 27-36
Author(s):  
Ken'ichi Nomoto

AbstractAfter the Big Bang, production of heavy elements in the early Universe takes place in the first stars and their supernova explosions. The nature of the first supernovae, however, has not been well understood. The signature of nucleosynthesis yields of the first supernovae can be seen in the elemental abundance patterns observed in extremely metal-poor stars. Interestingly, those abundance patterns show some peculiarities relative to the solar abundance pattern, which should provide important clues to understanding the nature of early generations of supernovae. We review the recent results of the nucleosynthesis yields of massive stars. We examine how those yields are affected by some hydrodynamical effects during the supernova explosions, namely, explosion energies from those of hypernovae to faint supernovae, mixing and fallback of processed materials, asphericity, etc. Those parameters in the supernova nucleosynthesis models are constrained from observational data of supernovae and metal-poor stars.


2007 ◽  
Author(s):  
Herbert H. B. Lau ◽  
Richard J. Stancliffe ◽  
Christopher A. Tout ◽  
Richard J. Stancliffe ◽  
Guenter Houdek ◽  
...  

Author(s):  
Abraham Loeb ◽  
Steven R. Furlanetto

This chapter considers the emergence of the complex chemical and radiative processes during the first stages of galaxy formation. It studies the appearance of the first stars, their feedback processes, and the resulting ionization structures that emerged during and shortly after the cosmic dawn. The formation of the first stars tens or hundreds of millions of years after the Big Bang had marked a crucial transition in the early Universe. Before this point, the Universe was elegantly described by a small number of parameters. But as soon as the first stars formed, more complex processes entered the scene. To illustrate this, the chapter provides a brief outline of the prevailing (though observationally untested) theory for this cosmological phase transition.


2004 ◽  
Vol 416 (3) ◽  
pp. 1117-1138 ◽  
Author(s):  
R. Cayrel ◽  
E. Depagne ◽  
M. Spite ◽  
V. Hill ◽  
F. Spite ◽  
...  

2002 ◽  
Vol 187 ◽  
pp. 23-32
Author(s):  
David Arnett

The possible nature of the first generation of stars is considered, using a star of 25M⊙ as an example. General nucleosynthesis and the production of CNO catalysts is examined in detail. The increase in neutron excess and its significance for yields from explosive burning is discussed. An estimate of the ratio of ionizing photons to heavy elements produced is derived, for use in early universe simulations.


Sign in / Sign up

Export Citation Format

Share Document