scholarly journals An empirical pipeline for determining the viscosity parameter for Be star disks

2014 ◽  
Vol 9 (S307) ◽  
pp. 133-134
Author(s):  
Leandro R. Rímulo ◽  
Alex C. Carciofi ◽  
Thomas Rivinius ◽  
Xavier Haubois

AbstractBe star phenomenology is strongly associated with their viscous circumstellar disks. Recently, models became available for the temporal evolution of these disks when subject to variable mass ejection rates. In this contribution we will discuss how these dynamical disk models, modeled with the radiative transfer code HDUST, can be used for constraining fundamental disk parameters, such as the α viscosity parameter, and we will report on an ongoing effort to model light curves of a large number of stars.

2018 ◽  
Vol 613 ◽  
pp. A70 ◽  
Author(s):  
T. Semaan ◽  
A. M. Hubert ◽  
J. Zorec ◽  
J. Gutiérrez-Soto ◽  
Y. Frémat ◽  
...  

Context. The class of Be stars are the epitome of rapid rotators in the main sequence. These stars are privileged candidates for studying the incidence of rotation on the stellar internal structure and on non-radial pulsations. Pulsations are considered possible mechanisms to trigger mass-ejection phenomena required to build up the circumstellar disks of Be stars. Aims. Time series analyses of the light curves of 15 faint Be stars observed with the CoRoT satellite were performed to obtain the distribution of non-radial pulsation (NRP) frequencies in their power spectra at epochs with and without light outbursts and to discriminate pulsations from rotation-related photometric variations. Methods. Standard Fourier techniques were employed to analyze the CoRoT light curves. Fundamental parameters corrected for rapid-rotation effects were used to study the power spectrum as a function of the stellar location in the instability domains of the Hertzsprung–Russell (H-R) diagram. Results. Frequencies are concentrated in separate groups as predicted for g-modes in rapid B-type rotators, except for the two stars that are outside the H-R instability domain. In five objects the variations in the power spectrum are correlated with the time-dependent outbursts characteristics. Time-frequency analysis showed that during the outbursts the amplitudes of stable main frequencies within 0.03 c d−1 intervals strongly change, while transients and/or frequencies of low amplitude appear separated or not separated from the stellar frequencies. The frequency patterns and activities depend on evolution phases: (i) the average separations between groups of frequencies are larger in the zero-age main sequence (ZAMS) than in the terminal age main sequence (TAMS) and are the largest in the middle of the MS phase; (ii) a poor frequency spectrum with f ≲ 1 cd−1 of low amplitude characterizes the stars beyond the TAMS; and (iii) outbursts are seen in stars hotter than B4 spectral type and in the second half of the MS. Conclusions. The two main frequency groups are separated by δf = (1.24 ± 0.28) × frot in agreement with models of prograde sectoral g-modes (m = −1, −2) of intermediate-mass rapid rotators. The changes of amplitudes of individual frequencies and the presence of transients correlated with the outburst events deserve further studies of physical conditions in the subatmospheric layers to establish the relationship between pulsations and sporadic mass-ejection events.


2009 ◽  
Vol 498 (3) ◽  
pp. 793-800 ◽  
Author(s):  
S. D. Hügelmeyer ◽  
S. Dreizler ◽  
P. H. Hauschildt ◽  
A. Seifahrt ◽  
D. Homeier ◽  
...  

1987 ◽  
Vol 92 ◽  
pp. 291-308 ◽  
Author(s):  
E.P.J. van den Heuvel ◽  
S. Rappaport

Most evidence on X-ray emission from the vicinity of Be stars concerns the Be/X-ray binaries. Presently some 20 of these systems are known, making them the most numerous class of massive X-ray binaries. Evidence for the binary nature of these systems comes from (i) Doppler modulation of X-ray pulse periods, (ii) periodic X-ray flaring behavior, and (iii) correlated optical and X-ray variability. The correlation between X-ray pulse period and orbital period found by Corbet (1984) can potentially provide important information on the densities and velocities in the circumstellar disks of Be stars.Evolutionary models indicate that the Be/X-ray binaries represent a later stage in the evolution of normal close binaries with initial primary masses predominantly in the the range 8 to 15 M⊙ . These models indicate that also a class of slightly less massive Be star binaries should exist in which the compact companions are white dwarfs. Be-type blue stragglers in galactic clusters may be such systems.


2020 ◽  
Vol 499 (3) ◽  
pp. 4312-4324
Author(s):  
Alexandra Kozyreva ◽  
Luke Shingles ◽  
Alexey Mironov ◽  
Petr Baklanov ◽  
Sergey Blinnikov

ABSTRACT We systematically explore the effect of the treatment of line opacity on supernova light curves. We find that it is important to consider line opacity for both scattering and absorption (i.e. thermalization, which mimics the effect of fluorescence). We explore the impact of the degree of thermalization on three major types of supernovae: Type Ia, Type II-peculiar, and Type II-plateau. For this we use the radiative transfer code stella and analyse broad-band light curves in the context of simulations done with the spectral synthesis code artis and in the context of a few examples of observed supernovae of each type. We found that the plausible range for the ratio between absorption and scattering in the radiation hydrodynamics code stella is (0.8–1):(0.2–0), i.e. the recommended thermalization parameter is 0.9.


2004 ◽  
Vol 215 ◽  
pp. 529-534
Author(s):  
A. T. Okazaki

Based on the viscous decretion disk model for Be Stars, we study the effect of the torque from the star on the Be star disk, using a 3-D smoothed particle hydrodynamics code and turning on and off the mass ejection from the star. We find that, after the mass ejection is shut off, the innermost part of the disk begins to accrete and the accreting part gradually propagates outward. We also find that the Be disk in misaligned binaries precesses in a retrograde sense when no mass is supplied from the star. If the mass supply is resumed for such a disk, an inner disk is formed with its rotation axis misaligned with that of the outer disk. By the interaction between the inner and outer disks, the outer disk rapidly changes its direction to that of the inner disk.


2000 ◽  
Vol 176 ◽  
pp. 334-337
Author(s):  
Michael U. Feuchtinger ◽  
Ernst A. Dorfi

AbstractBy performing detailed frequency-dependent radiative transfer computations we are able to calculate light curves in particular bandpasses from stellar pulsation models calculated by the Vienna nonlinear convective pulsation code. As a sample application we discuss UBVI light curves of RR Lyrae stars. The properties of these light curves are analyzed by means of standard Fourier decomposition, and a comparison to recent observations is performed. As main results we find a good agreement with important observed RR Lyrae properties like pulsation amplitudes and Fourier parameters in B, V, and I bands. Additionally, from the synthetic color curves we derive linear transformation laws between amplitudes as well as Fourier parameters in the different bandpasses.


1980 ◽  
Vol 235 ◽  
pp. L17 ◽  
Author(s):  
V. Doazan ◽  
L. V. Kuhi ◽  
R. N. Thomas
Keyword(s):  

2018 ◽  
Vol 620 ◽  
pp. A145 ◽  
Author(s):  
D. Baade ◽  
A. Pigulski ◽  
Th. Rivinius ◽  
L. Wang ◽  
Ch. Martayan ◽  
...  

Context. In early-type Be stars, groups of nonradial pulsation (NRP) modes with numerically related frequencies may be instrumental for the release of excess angular momentum through mass-ejection events. Difference and sum/harmonic frequencies often form additional groups. Aims. The purpose of this study is to find out whether a similar frequency pattern occurs in the cooler third-magnitude B7-8 IIIe shell star ν Pup. Methods. Time-series analyses were performed of space photometry with BRITE-Constellation (2015, 2016/17, and 2017/18), SMEI (2003–2011), and HIPPARCOS (1989–1993). Two IUE SWP and 27 optical echelle spectra spanning 20 years were retrieved from various archives. Results. The optical spectra exhibit no anomalies or well-defined variabilities. A magnetic field was not detected. All three photometry satellites recorded variability near 0.656 c/d which is resolved into three features separated by ∼0.0021 c/d. Their first harmonics and two combination frequencies form a second group, whose features are similarly spaced by 0.0021 c/d. The frequency spacing is very nearly but not exactly equidistant. Variability near 0.0021 c/d was not detected. The long-term frequency stability could be used to derive meaningful constraints on the properties of a putative companion star. The IUE spectra do not reveal the presence of a hot subluminous secondary. Conclusions. ν Pup is another Be star exhibiting an NRP variability pattern with long-term constancy and underlining the importance of combination frequencies and frequency groups. This star is a good target for efforts to identify an effectively single Be star.


2000 ◽  
Vol 175 ◽  
pp. 422-447
Author(s):  
J.E. Bjorkman

AbstractSeveral theories have been proposed to explain the origin of Be star disks. Among them are Wind-Compressed Disks, accretion disks, decretion disks, and “explosive” ejections. In reviewing these mechanisms, I first concentrate on the current status of the Wind-Compressed Disk model. In particular, I discuss how non-radial forces may prevent disk formation and then discuss various physical effects that may restore the disk. Second, I examine the observational evidence and what it tells us about the structure of the disk. Of particular interest is evidence in favor of Keplerian disks. Finally, I discuss theories for Keplerian disk formation and some of the constraints such theories must satisfy.


2004 ◽  
Vol 194 ◽  
pp. 169-171
Author(s):  
Gaghik H. Tovmassian ◽  
Sergei V. Zharikov

AbstractWe discovered that the short period cataclysmic variable FS Aur at some epochs shows a photometric period close to the orbital. It exceeds the orbital period by ∽2%, which is a sign of the presence of a permanent superhump in the system. Superhumps tend to appear near short, low amplitude outbursts. We assume that FS Aur possesses a large thermally stable accretion disc and that the outburst may be due to the variable mass transfer rate. This, however, does not alter our previous explanation of yet another, 2.4 times longer than orbital, photometric period of FS Aur, found earlier, and persistently observed in its light curves.


Sign in / Sign up

Export Citation Format

Share Document