scholarly journals Swift monitoring and Suzaku spectroscopy of the γ-ray detected narrow-line Seyfert 1 galaxy 1H 0323+342

2014 ◽  
Vol 10 (S312) ◽  
pp. 66-67
Author(s):  
S. Yao ◽  
W. Yuan ◽  
S. Komossa ◽  
D. Grupe ◽  
L. Fuhrmann ◽  
...  

Abstract1H 0323+342 is one of the rare γ-ray detected narrow-line Seyfert 1 galaxies (NLS1s), a special subset of active galactic nuclei (AGN) owing to their hybrid behavior of both NLS1s and blazars. The rarity of such kind of sources makes their properties far from being understood. We analyze simultaneous X-ray and UV/optical monitoring observations of 1H 0323+342 performed by Swift over ~7 years. The UV/X-ray correlation and the broad band SED reveal that the X-ray band is dominated by the disk/corona emission during the observations. The large normalized excess variance of the X-ray variability detected with Suzaku suggests a relatively small black hole mass of the order of 107M⊙, consistent with the estimation based on the broad Hβ line in the optical band.

2018 ◽  
Vol 866 (1) ◽  
pp. 69 ◽  
Author(s):  
Hai-Wu Pan ◽  
Weimin Yuan ◽  
Su Yao ◽  
S. Komossa ◽  
Chichuan Jin
Keyword(s):  
X Ray ◽  

1999 ◽  
Vol 194 ◽  
pp. 306-310
Author(s):  
Q. Yuan ◽  
J. Wu ◽  
K. Huang

This paper presents a test of the luminosity correlation of the X-ray selected radio-loud Active Galactic Nuclei (AGNs), based on a large sample constructed by combining our cross-identification of southern sky sources with the radio-loud sources in the northern hemisphere given by Brinkmann et al. (1995). All sources were detected both by the ROSAT All-Sky Survey and the radio surveys at 4.85 GHz. The broad band energy distribution confirms the presence of strong correlations between luminosities in the radio, optical, and X-ray bands which differ for quasars, seyferts, BL Lacs, and radio galaxies. The tight correlations between spectral indices αox and monochromatic luminosities at 5500 Å and 4.85 GHz are also shown.


2012 ◽  
Vol 8 (S290) ◽  
pp. 37-40
Author(s):  
O. González-Martín ◽  
S. Vaughan

AbstractWe have performed a uniform analysis of the power spectrum densities (PSDs) of 104 nearby (z<0.4) active galactic nuclei (AGN) using 209 XMM-Newton/pn observations, including several AGN classes. These PSDs span ≃ 3 decades in temporal frequencies, ranging from minutes to days. We have fitted each PSD to two models: (1) a single power-law model and (2) a bending power-law model. A fraction of 72% show significant variability. The PSD of the majority of the variable AGN was well described by a simple power-law with a mean index of α = 2.01±0.01. In 15 sources we found that the bending power law model was preferred with a mean slope of α = 3.08±0.04 and a mean bend frequency of 〈νb〉 ≃ 2 × 10−4 Hz. Only KUG 1031+398 (RE J1034+396) shows evidence for quasi-periodic oscillations. The ‘fundamental plane’ relating variability timescale, black hole mass, and luminosity is demonstrated using the new X-ray timing results presented here together with a compilation of the previously detected timescales from the literature.


2015 ◽  
Vol 808 (2) ◽  
pp. 163 ◽  
Author(s):  
Hai-Wu Pan ◽  
Weimin Yuan ◽  
Xin-Lin Zhou ◽  
Xiao-Bo Dong ◽  
Bifang Liu

2000 ◽  
Vol 195 ◽  
pp. 143-152
Author(s):  
R. Svensson

Recent progress using RXTE and BeppoSAX to study the X/γ emission from radio-quiet active galactic nuclei, i.e., Seyfert galaxies, is reviewed. These satellites allow simultaneous broad-band spectra extending from 0.1–200 keV to be observed for the first time and allow the various spectral components to be determined with some certainty. In particular, the new observations support the unified model of Seyfert galaxies. Most importantly, it has been found that a large fraction of Seyfert 2 galaxies have Compton-thick tori surrounding their nuclei. Spectral transitions in Seyfert galaxies are discussed, as well as recent efforts trying to synthesize the cosmic X/γ-ray background. Finally, thermal Comptonization in these sources are discussed.


2020 ◽  
Vol 497 (1) ◽  
pp. 229-245 ◽  
Author(s):  
A Annuar ◽  
D M Alexander ◽  
P Gandhi ◽  
G B Lansbury ◽  
D Asmus ◽  
...  

ABSTRACT We present NuSTAR (Nuclear Spectroscopic Telescope Array) observations of four active galactic nuclei (AGNs) located within 15 Mpc. These AGNs, namely ESO 121-G6, NGC 660, NGC 3486, and NGC 5195, have observed X-ray luminosities of L2–10 keV,obs ≲ 1039 erg s−1, classifying them as low-luminosity AGN (LLAGN). We perform broad-band X-ray spectral analysis for the AGN by combining our NuSTAR data with Chandra or XMM–Newton observations to directly measure their column densities (NH) and infer their intrinsic power. We complement our X-ray data with archival and new high-angular resolution mid-infrared (mid-IR) data for all objects, except NGC 5195. Based on our X-ray spectral analysis, we found that both ESO 121-G6 and NGC 660 are heavily obscured (NH &gt; 1023 cm−2; L2–10 keV,int ∼ 1041 erg s−1), and NGC 660 may be Compton thick. We also note that the X-ray flux and spectral slope for ESO 121-G6 have significantly changed over the last decade, indicating significant changes in the obscuration and potentially accretion rate. On the other hand, NGC 3486 and NGC 5195 appear to be unobscured and just mildly obscured, respectively, with L2–10 keV,int &lt; 1039 erg s−1, i.e. genuine LLAGN. Both of the heavily obscured AGNs have Lbol &gt; 1041 erg s−1 and λEdd ≳ 10−3, and are detected in high-angular resolution mid-IR imaging, indicating the presence of obscuring dust on nuclear scale. NGC 3486, however, is undetected in high-resolution mid-IR imaging, and the current data do not provide stringent constraints on the presence or absence of obscuring nuclear dust in the AGN.


Sign in / Sign up

Export Citation Format

Share Document