small black hole
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Bin Wu ◽  
Chao Wang ◽  
Zhen-Ming Xu ◽  
Wen-Li Yang

AbstractThe phase transition and thermodynamic geometry of a 4-dimensional AdS topological charged black hole in de Rham, Gabadadze and Tolley (dRGT) massive gravity have been studied. After introducing a normalized thermodynamic scalar curvature, it is speculated that its value is related to the interaction between the underlying black hole molecules if the black hole molecules exist. We show that there does exist a crucial parameter given in terms of the topology, charge, and massive parameters of the black hole, which characterizes the thermodynamic properties of the black hole. It is found that when the parameter is positive, the singlet large black hole phase does not exist for sufficient low temperature and there is a weak repulsive interaction dominating for the small black hole which is similar to the Reissner–Nordström AdS black hole; when the parameter is negative, an additional phase region describing large black holes also implies a dominant repulsive interaction. These constitute the distinguishable features of dRGT massive topological black hole from those of the Reissner–Nordström AdS black hole as well as the Van der Waals fluid system.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Julián Barragán Amado ◽  
Bruno Carneiro da Cunha ◽  
Elisabetta Pallante

Abstract We study the low-temperature limit of scalar perturbations of the Kerr-AdS5 black-hole for generic rotational parameters. We motivate the study by considering real-time holography of small black hole backgrounds. Using the isomonodromic technique, we show that corrections to the extremal limit can be encoded in the monodromy parameters of the Painlevé V transcendent, whose expansion is given in terms of irregular chiral conformal blocks. After discussing the contribution of the intermediate states to the quasinormal modes, we perform a numerical analysis of the low-lying frequencies. We find that the fundamental mode is perturbatively stable at low temperatures for small black holes and that excited perturbations are superradiant, as expected from thermodynamical considerations. We close by considering the holographic interpretation of the unstable modes and the decaying process.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Mengjie Wang ◽  
Zhou Chen ◽  
Qiyuan Pan ◽  
Jiliang Jing

AbstractWe generalize our previous studies on the Maxwell quasinormal modes around Schwarzschild-anti-de-Sitter black holes with Robin type vanishing energy flux boundary conditions, by adding a global monopole on the background. We first formulate the Maxwell equations both in the Regge–Wheeler–Zerilli and in the Teukolsky formalisms and derive, based on the vanishing energy flux principle, two boundary conditions in each formalism. The Maxwell equations are then solved analytically in pure anti-de Sitter spacetimes with a global monopole, and two different normal modes are obtained due to the existence of the monopole parameter. In the small black hole and low frequency approximations, the Maxwell quasinormal modes are solved perturbatively on top of normal modes by using an asymptotic matching method, while beyond the aforementioned approximation, the Maxwell quasinormal modes are obtained numerically. We analyze the Maxwell quasinormal spectrum by varying the angular momentum quantum number $$\ell $$ ℓ , the overtone number N, and in particular, the monopole parameter $$8\pi \eta ^2$$ 8 π η 2 . We show explicitly, through calculating quasinormal frequencies with both boundary conditions, that the global monopole produces the repulsive force.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yun-Zhi Du ◽  
Hui-Hua Zhao ◽  
Li-Chun Zhang

The phase transition of the Einstein-Gauss-Bonnet AdS black hole has the similar property with the van der Waals thermodynamic system. However, it is determined by the Gauss-Bonnet coefficient α , not only the horizon radius. Furthermore, the phase transition is not the pure one between a big black hole and a small black hole. With this issue, we introduce a new order parameter to investigate the critical phenomenon and to give the microstructure explanation of the Einstein-Gauss-Bonnet AdS black hole phase transition. And the critical exponents are also obtained. At the critical point of the Einstein-Gauss-Bonnet AdS black hole, we reveal the microstructure of the black hole by investigating the thermodynamic geometry. These results perhaps provide some certain help to deeply explore the black hole microscopic structure and to build the quantum gravity.


2020 ◽  
Vol 35 (22) ◽  
pp. 2050120 ◽  
Author(s):  
Pavan Kumar Yerra ◽  
Chandrasekhar Bhamidipati

Using the new normalized thermodynamic scalar curvature, we investigate the microstructures and phase transitions of black holes in massive gravity for horizons of various topologies. We find that the graviton mass enhances the repulsive interactions of small black holes and weakens the attractive interactions of large black holes, with possibility of new repulsive regions for microstructures in phase space. In addition, the repulsive interactions of small black hole are strong for spherical topology, followed by flat and hyperbolic topology; while, the attractive interactions of large black hole are strong for hyperbolic topology, followed by flat and weakest for spherical topology.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Pablo A. Cano ◽  
Pedro F. Ramírez ◽  
Alejandro Ruipérez
Keyword(s):  

Author(s):  
Xiong-Ying Guo ◽  
Huai-Fan Li ◽  
Li-Chun Zhang ◽  
Ren Zhao

Abstract Previously, the Maxwell equal-area law has been used to discuss the conditions satisfied by the phase transition of charged AdS black holes with cloud of string and quintessence, and it was concluded that black holes have phase transition similar to that of vdW system. The phase transition depends on the electric potential of the black hole and is not the one between a large black hole and a small black hole. On the basis of this result, we study the relation between the latent heat of the phase transition and the parameter of dark energy, and use the Landau continuous phase transition theory to discuss the critical phenomenon of the black hole with quintessence and give the critical exponent. By introducing the number density of the black hole molecules, some properties of the microstructure of black holes are studied in terms of a phase transition. It is found that the electric charge of the black hole and the normalization parameter related to the density of quintessence field play a key role in the phase transition. By constructing the binary fluid model of the black hole molecules, we also discuss the microstructure of charged AdS black holes with a cloud of strings and quintessence.


Galaxies ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 87 ◽  
Author(s):  
Filippo D’Ammando

Before the launch of the Fermi Gamma-ray Space Telescope satellite only two classes of active galactic nuclei (AGN) were known to generate relativistic jets and thus to emit up to the γ -ray energy range: blazars and radio galaxies, both hosted in giant elliptical galaxies. The discovery by the Large Area Telescope (LAT) on-board the Fermi satellite of variable γ -ray emission from a few radio-loud narrow-line Seyfert 1 galaxies (NLSy1) revealed the presence of an emerging third class of AGN with powerful relativistic jets. Considering that NLSy1 are usually hosted in late-type galaxies with relatively small black hole masses, this finding opened new challenging questions about the nature of these objects, the disc/jet connection, the emission mechanisms at high energies, and the formation of relativistic jets. In this review, I will discuss the broad-band properties of the γ -ray-emitting NLSy1 included in the Fourth Fermi LAT source catalog, highlighting major findings and open questions regarding jet physics, black hole mass estimation, host galaxy and accretion process of these sources in the Fermi era.


Universe ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. 127 ◽  
Author(s):  
Carlo Rovelli ◽  
Francesca Vidotto

We show that the expected lifetime of white holes formed as remnants of evaporated black holes is consistent with their production at reheating. We give a simple quantum description of these objects and argue that a quantum superposition of black and white holes with large interiors is stable, because it is protected by the existence of a minimal eigenvalue of the area, predicted by Loop Quantum Gravity. These two results support the hypothesis that a component of dark matter could be formed by small black hole remnants.


Sign in / Sign up

Export Citation Format

Share Document