scholarly journals Preliminary results from simulations on the sub-galactic structure formation

2014 ◽  
Vol 10 (S312) ◽  
pp. 155-156
Author(s):  
Kyungwon Chun ◽  
Jihye Shin

AbstractWe aim to investigate the formation of sub-galactic structure in the Lambda cold dark matter (CDM) cosmology. To accomplish our research goal, we have added various baryonic physics on the existing cosmological hydrodynamic code, GADGET-2. We performed two test runs to check our new implementations. We show our preliminary results from these test runs.

2020 ◽  
Vol 497 (3) ◽  
pp. 2941-2953 ◽  
Author(s):  
Anchal Saxena ◽  
Suman Majumdar ◽  
Mohd Kamran ◽  
Matteo Viel

ABSTRACT The nature of dark matter sets the timeline for the formation of first collapsed haloes and thus affects the sources of reionization. Here, we consider two different models of dark matter: cold dark matter (CDM) and thermal warm dark matter (WDM), and study how they impact the epoch of reionization (EoR) and its 21-cm observables. Using a suite of simulations, we find that in WDM scenarios, the structure formation on small scales gets suppressed, resulting in a smaller number of low-mass dark matter haloes compared to the CDM scenario. Assuming that the efficiency of sources in producing ionizing photons remains the same, this leads to a lower number of total ionizing photons produced at any given cosmic time, thus causing a delay in the reionization process. We also find visual differences in the neutral hydrogen (H i) topology and in 21-cm maps in case of the WDM compared to the CDM. However, differences in the 21-cm power spectra, at the same neutral fraction, are found to be small. Thus, we focus on the non-Gaussianity in the EoR 21-cm signal, quantified through its bispectrum. We find that the 21-cm bispectra (driven by the H i topology) are significantly different in WDM models compared to the CDM, even for the same mass-averaged neutral fractions. This establishes that the 21-cm bispectrum is a unique and promising way to differentiate between dark matter models, and can be used to constrain the nature of the dark matter in the future EoR observations.


2004 ◽  
Vol 220 ◽  
pp. 91-98 ◽  
Author(s):  
J. E. Taylor ◽  
J. Silk ◽  
A. Babul

Models of structure formation based on cold dark matter predict that most of the small dark matter haloes that first formed at high redshift would have merged into larger systems by the present epoch. Substructure in present-day haloes preserves the remains of these ancient systems, providing the only direct information we may ever have about the low-mass end of the power spectrum. We describe some recent attempts to model halo substructure down to very small masses, using a semi-analytic model of halo formation. We make a preliminary comparison between the model predictions, observations of substructure in lensed systems, and the properties of local satellite galaxies.


2002 ◽  
Vol 11 (01) ◽  
pp. 61-102 ◽  
Author(s):  
JIUN-HUEI PROTY WU ◽  
PEDRO P. AVELINO ◽  
E. P. S. SHELLARD ◽  
BRUCE ALLEN

We describe a detailed study of string-seeded structure formation using high resolution numerical simulations in open universes and those with a non-zero cosmological constant. We provide a semi-analytical model which can reproduce these simulation results including the effect from small loops chopped of by the string network. A detailed study of cosmic string network properties regarding structure formation is also given, including the correlation time, the topological analysis of the source spectrum, the correlation between long strings and loops, and the evolution of long-string and loop energy densities. For models with Γ=Ω h=0.1 -0.2 and a cold dark matter background, we show that the linear density fluctuation power spectrum induced by cosmic strings has both an amplitude at 8 h-1 Mpc, σ8, and an overall shape which are consistent within uncertainties with those currently inferred from galaxy surveys. The cosmic string scenario with hot dark matter requires a strongly scale-dependent bias in order to agree with observations.


2009 ◽  
Vol 24 (29) ◽  
pp. 2291-2305 ◽  
Author(s):  
MARCEL ZEMP

We review results from recent high resolution cosmological structure formation simulations, namely the Via Lactea I & II and GHALO projects. These simulations study the formation of Milky Way sized objects within a cosmological framework. We discuss the general properties of cold dark matter halos at redshift z = 0 and focus on new insights into the structure of halos we got due to the unprecedented high resolution in these simulations.


2010 ◽  
Vol 6 (S274) ◽  
pp. 376-380
Author(s):  
Hanna Kotarba ◽  
Harald Lesch ◽  
Klaus Dolag ◽  
Thorsten Naab

AbstractThe evolution and amplification of large-scale magnetic fields in galaxies is investigated by means of high resolution simulations of interacting galaxies. The goal of our project is to consider in detail the role of gravitational interaction of galaxies for the fate of magnetic fields. Since the tidal interaction up to galaxy merging is a basic ingredient of cold-dark matter (CDM) structure formation models we think that our simulations will give important clues for the interplay of galactic dynamics and magnetic fields.


2005 ◽  
Vol 14 (02) ◽  
pp. 187-221 ◽  
Author(s):  
PAOLO CIARCELLUTI

This is the first paper of a series devoted to the study of the cosmological implications of the parallel mirror world with the same microphysics as the ordinary one, but having smaller temperature, with a limit set by the BBN constraints. The difference in temperature of the ordinary and mirror sectors generates shifts in the key epochs for structure formation, which proceeds in the mirror sector under different conditions. We consider adiabatic scalar primordial perturbations as an input and analyze the trends of all the relevant scales for structure formation (Jeans length and mass, Silk scale, horizon scale) for both ordinary and mirror sectors, comparing them with the CDM case. These scales are functions of the fundamental parameters of the theory (the temperature of the mirror plasma and the amount of mirror baryonic matter), and in particular they are influenced by the difference between the cosmological key epochs in the two sectors. Then we use a numerical code to compute the evolution in linear regime of density perturbations for all the components of a Mirror Universe: ordinary baryons and photons, mirror baryons and photons, and possibly cold dark matter. We analyze the evolution of the perturbations for different values of mirror temperature and baryonic density, and obtain that for x=T′/T less than a typical value x eq , for which the mirror baryon–photon decoupling happens before the matter–radiation equality, mirror baryons are equivalent to the CDM for the linear structure formation process. Indeed, the smaller the value of x, the closer mirror dark matter resembles standard cold dark matter during the linear regime.


2004 ◽  
Vol 220 ◽  
pp. 143-144
Author(s):  
Masamune Oguri

Recent development of the structure formation theory based on the cold dark matter scenario implies that a number of larger separation lensed quasars, for which a confirmed detection has not yet been achieved, will be observed in the ongoing large-scale surveys such as the 2dF survey and SDSS. We show that statistics of such large separation lenses can be a powerful probe of the density profile of dark halos. After we summarize the current status of the lens surveys in the 2dF and SDSS, we focus our discussion on what information can be extracted from these lens surveys. in addition, we also propose statistics of differential time delays between multiple images as an alternative probe of the density profile of dark halos.


2005 ◽  
Vol 14 (01) ◽  
pp. 107-119 ◽  
Author(s):  
ZURAB BEREZHIANI ◽  
PAOLO CIARCELLUTI ◽  
DENIS COMELLI ◽  
FRANCESCO L. VILLANTE

In the mirror world hypothesis, the mirror baryonic component emerges as a possible dark matter candidate. An immediate question arises: how do the mirror baryons behave and what are their differences from the more familiar dark matter candidates such as cold dark matter? In this paper, we answer this question quantitatively. First, we discuss the dependence of the relevant scales for the structure formation (Jeans and Silk scales) on the two macroscopic parameters necessary to define the model: the temperature of the mirror plasma (limited by the Big Bang Nucleosynthesis) and the amount of mirror baryonic matter. Then we perform a complete quantitative calculation of the implications of mirror dark matter on the cosmic microwave background and large scale structure power spectrum. Finally, confronting with the present observational data, we obtain some bounds on the mirror parameter space.


Author(s):  
Tanja Rindler-Daller

In recent years, Bose-Einstein-condensed dark matter (BEC-DM) has become a popular alternative to standard, collisionless cold dark matter (CDM). This BEC-DM -also called scalar field dark matter (SFDM)- can suppress structure formation and thereby resolve the small-scale crisis of CDM for a range of boson masses. However, these same boson masses also entail implications for BEC-DM substructure within galaxies, especially within our own Milky Way. Observational signature effects of BEC-DM substructure depend upon its unique quantum-mechanical features and have the potential to reveal its presence. Ongoing efforts to determine the dark matter substructure in our Milky Way will continue and expand considerably over the next years. In this contribution, we will discuss some of the existing constraints and potentially new ones with respect to the impact of BEC-DM onto baryonic tracers. Studying dark matter substructure in our Milky Way will soon resolve the question, whether dark matter behaves classical or quantum on scales of ≲ 1 kpc.


Sign in / Sign up

Export Citation Format

Share Document