scholarly journals Modelling coronal electron density and temperature profiles based on solar magnetic field observations

2016 ◽  
Vol 12 (S328) ◽  
pp. 159-161
Author(s):  
J. M. Rodríguez Gómez ◽  
L. E. Antunes Vieira ◽  
A. Dal Lago ◽  
J. Palacios ◽  
L. A. Balmaceda ◽  
...  

AbstractThe density and temperature profiles in the solar corona are complex to describe, the observational diagnostics is not easy. Here we present a physics-based model to reconstruct the evolution of the electron density and temperature in the solar corona based on the configuration of the magnetic field imprinted on the solar surface. The structure of the coronal magnetic field is estimated from Potential Field Source Surface (PFSS) based on magnetic field from both observational synoptic charts and a magnetic flux transport model. We use an emission model based on the ionization equilibrium and coronal abundances from CHIANTI atomic database 8.0. The preliminary results are discussed in details.

2016 ◽  
Vol 12 (S327) ◽  
pp. 82-85 ◽  
Author(s):  
J. M. Rodríguez Gómez ◽  
L. E. Antunes Vieira ◽  
A. Dal Lago ◽  
J. Palacios ◽  
L. A. Balmaceda ◽  
...  

AbstractSome key physical processes that impact the evolution of Earth's atmosphere on time-scale from days to millennia, such as the EUV emissions, are determined by the solar magnetic field. However, observations of the solar spectral irradiance are restricted to the last few solar cycles and are subject to large uncertainties. We present a physics-based model to reconstruct short-term solar spectral irradiance (SSI) variability. The coronal magnetic field is estimated to employ the Potential Field Source Surface extrapolation (PFSS) based on observational synoptic charts and magnetic flux transport model. The emission is estimated to employ the CHIANTI atomic database 8.0. The performance of the model is compared to the emission observed by TIMED/SORCE.


1972 ◽  
Vol 8 (2) ◽  
pp. 231-253 ◽  
Author(s):  
J. M. Chasseriaux ◽  
R. Debrie ◽  
C. Renard

The frequency response of the h.f. quadrupole probe is calculated to be used as a diagnostic tool for measurements of electron density and temperature. In §2 the magnetic field is assumed to be zero, and ion motions are neglected. For a Maxwellian plasma, the so-called ‘Landau wave approximation’ is compared with various more sophisticated treatments, such as numerical integration or super-Cauchy and multiple water-bag models. The range of validity of this approximation is shown to be large, and the results can be applied to the most interesting parts of the experimental observations. All results previously established are recovered with greater speed. Having studied various disturbances (collisions, inhomogeneity and relative motion of the probe with respect to the plasma), it is deduced that the best way to determine the electron temperature is to use the anti-resonances due to beating between the Landau wave and the cold plasma field. In § 3 we describe the quadrupole probe, launched in December 1971 as part of the CISASPE rocket experiment. To deduce the electron density and temperature from these measurements, it is necessary to consider the influence of a static magnetic field, such as the earth's magnetic field. The general case could be treated by numerical integration, though with great difficulty, but it is shown that in most ionospheric conditions, in the vicinity of the upper hybrid frequency ωT the above treatment is again possible, the plasma frequency simply being replaced by ωT, and the thermal velocity slightly modified. These assumptions are used to deduce the electron density and temperature profiles.


2011 ◽  
Vol 7 (S286) ◽  
pp. 238-241
Author(s):  
Federico A. Nuevo ◽  
Alberto M. Vásquez ◽  
Richard A. Frazin ◽  
Zhenguang Huang ◽  
Ward B. Manchester

AbstractWe recently extended the differential emission measure tomography (DEMT) technique to be applied to the six iron bands of the Atmospheric Imaging Assembly (AIA) instrument aboard the Solar Dynamics Observatory (SDO). DEMT products are the 3D reconstruction of the coronal emissivity in the instrument's bands, and the 3D distribution of the local differential emission measure, in the height range 1.0 to 1.25 R⊙. We show here derived maps of the electron density and temperature of the inner solar corona during the rising phase of solar Cycle 24. We discuss the distribution of our results in the context of open/closed magnetic regions, as derived from a global potential field source surface (PFSS) model of the same period. We also compare the results derived with SDO/AIA to those derived with the Extreme UltraViolet Imager (EUVI) instrument aboard the Solar TErrestrial RElations Observatory (STEREO).


1999 ◽  
Vol 104 (A5) ◽  
pp. 9709-9720 ◽  
Author(s):  
A. Fludra ◽  
G. Del Zanna ◽  
D. Alexander ◽  
B. J. I. Bromage

2020 ◽  
Author(s):  
Kalevi Mursula ◽  
Ilpo Virtanen ◽  
Jennimari Koskela ◽  
Ismo Tähtinen

<p>Several studies have noted on changes in the properties of sunspots, and in the mutual relations between various global parameters of solar magnetic activity (e.g. UV/EUV irradiance, radio and IR emissions, TSI/SSI), as well as between solar and ionospheric parameters since the onset of solar cycle 23. These changes have been suggested to be related to the overall reduction of solar activity at the aftermath of the decline of the Grand modern maximum of solar activity that prevailed during most of the 20th century. We have recently derived the longest record of coronal magnetic field intensities since 1968 using Mount Wilson Observatory and Wilcox Solar Observatory observations of the photospheric magnetic field and the PFSS model, and compared it with the heliospheric magnetic field observed at the Earth. We found that the time evolution of the coronal magnetic field during the last 50 years agrees with the heliospheric magnetic field only if the effective coronal size, the distance of the coronal source surface of the heliospheric magnetic field, is allowed to change in time. We calculated the optimum distance for each solar rotation and found that it experienced an abrupt decrease in the late 1990s. The effective volume of the solar corona shrunk to less than one half of its previous value during a short period of only a few years. This shrinking was related with a systematic change in the structure of the coronal magnetic field during the same time interval. We review these dramatic changes in the solar corona and discuss their possible connection to the changes in the different solar activity parameters and the reduction of the overall solar activity.</p>


Author(s):  
Nishant M. Narechania ◽  
Ljubomir Nikolic ◽  
Lucie Freret ◽  
Hans De Sterck ◽  
Clinton P. T. Groth

The development of numerical models and tools which have operational space weather potential is an increasingly important area of research. This study presents recent Canadian efforts toward the development of a numerical framework for Sun-to-Earth simulations of solar wind disturbances. This modular three-dimensional (3D) simulation framework is based on a semi-empirical data-driven approach to describe the solar corona and an MHD-based description of the heliosphere. In the present configuration, the semi-empirical component uses the Potential Field Source Surface (PFSS) and Schatten Current Sheet (SCS) models to derive the coronal magnetic field based on observed magnetogram data. Using empirical relations, solar wind properties are associated with this coronal magnetic field. Together with a Coronal Mass Ejection (CME) model, this provides inner boundary conditions for a global MHD model which is used to describe interplanetary propagation of the solar wind and CMEs. The proposed MHD numerical approach makes use of advanced numerical techniques. The 3D MHD code employs a finite-volume discretization procedure with limited piecewise linear reconstruction to solve the governing partial-differential equations. The equations are solved on a body-fitted hexahedral multi-block cubed-sphere mesh and an efficient iterative Newton method is used for time-invariant simulations and an explicit time-marching scheme is applied for unsteady cases. Additionally, an efficient anisotropic block-based refinement technique provides significant reductions in the size of the computational mesh by locally refining the grid in selected directions as dictated by the flow physics. The capabilities of the framework for accurately capturing solar wind structures and forecasting solar wind properties at Earth are demonstrated. Furthermore, a comparison with previously reported results and future space weather forecasting challenges are discussed.


2021 ◽  
Vol 21 (4) ◽  
pp. 095
Author(s):  
Shao-Lan Bi ◽  
Tan-Da Li ◽  
Kang Liu ◽  
Jie Jiang ◽  
Ya-Guang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document