Chemical modelling of N-bearing COMs in star-forming regions

2017 ◽  
Vol 13 (S332) ◽  
pp. 415-417
Author(s):  
David Quénard ◽  
Izaskun Jiménez-Serra ◽  
Serena Viti ◽  
Jonathan Holdship

AbstractThe study of complex organic molecules, and more specifically those of prebiotic interest, is important to understand the chemical richness of star-forming regions. The chemistry of nitrogen bearing molecules such as formamide or methyl isocyanate is poorly constrained. We study different chemical pathways to form and destroy these molecules from both the gas phase and grain surface chemistry. From comparison with observations of four different relevant astrophysical regions, we show that both the gas phase and grain surface chemistry are required to explain the observed abundances of these species.

2019 ◽  
Vol 631 ◽  
pp. A137 ◽  
Author(s):  
H. Calcutt ◽  
E. R. Willis ◽  
J. K. Jørgensen ◽  
P. Bjerkeli ◽  
N. F. W. Ligterink ◽  
...  

Context. Propyne (CH3CCH), also known as methyl acetylene, has been detected in a variety of environments, from Galactic star-forming regions to extragalactic sources. These molecules are excellent tracers of the physical conditions in star-forming regions, allowing the temperature and density conditions surrounding a forming star to be determined. Aims. This study explores the emission of CH3CCH in the low-mass protostellar binary, IRAS 16293–2422, and examines the spatial scales traced by this molecule, as well as its formation and destruction pathways. Methods. Atacama Large Millimeter/submillimeter Array (ALMA) observations from the Protostellar Interferometric Line Survey (PILS) were used to determine the abundances and excitation temperatures of CH3CCH towards both protostars. This data allows us to explore spatial scales from 70 to 2400 au. This data is also compared with the three-phase chemical kinetics model MAGICKAL, to explore the chemical reactions of this molecule. Results. CH3CCH is detected towards both IRAS 16293A and IRAS 16293B, and is found the hot corino components, one around each source, in the PILS dataset. Eighteen transitions above 3σ are detected, enabling robust excitation temperatures and column densities to be determined in each source. In IRAS 16293A, an excitation temperature of 90 K and a column density of 7.8 × 1015 cm−2 best fits the spectra. In IRAS 16293B, an excitation temperature of 100 K and 6.8 × 1015 cm−2 best fits the spectra. The chemical modelling finds that in order to reproduce the observed abundances, both gas-phase and grain-surface reactions are needed. The gas-phase reactions are particularly sensitive to the temperature at which CH4 desorbs from the grains. Conclusions. CH3CCH is a molecule whose brightness and abundance in many different regions can be utilised to provide a benchmark of molecular variation with the physical properties of star-forming regions. It is essential when making such comparisons, that the abundances are determined with a good understanding of the spatial scale of the emitting region, to ensure that accurate abundances are derived.


2020 ◽  
Vol 644 ◽  
pp. A84
Author(s):  
C. Mininni ◽  
M. T. Beltrán ◽  
V. M. Rivilla ◽  
A. Sánchez-Monge ◽  
F. Fontani ◽  
...  

Context. One of the goals of astrochemistry is to understand the degree of chemical complexity that can be reached in star-forming regions, along with the identification of precursors of the building blocks of life in the interstellar medium. To answer such questions, unbiased spectral surveys with large bandwidth and high spectral resolution are needed, in particular, to resolve line blending in chemically rich sources and identify each molecule (especially for complex organic molecules). These kinds of observations have already been successfully carried out, primarily towards the Galactic Center, a region that shows peculiar environmental conditions. Aims. We present an unbiased spectral survey of one of the most chemically rich hot molecular cores located outside the Galactic Center, in the high-mass star-forming region G31.41+0.31. The aim of this 3mm spectral survey is to identify and characterize the physical parameters of the gas emission in different molecular species, focusing on complex organic molecules. In this first paper, we present the survey and discuss the detection and relative abundances of the three isomers of C2H4O2: methyl formate, glycolaldehyde, and acetic acid. Methods. Observations were carried out with the ALMA interferometer, covering all of band 3 from 84 to 116 GHz (~32 GHz bandwidth) with an angular resolution of 1.2′′ × 1.2′′ (~ 4400 au × 4400 au) and a spectral resolution of ~0.488 MHz (~1.3−1.7 km s−1). The transitions of the three molecules have been analyzed with the software XCLASS to determine the physical parameters of the emitted gas. Results. All three isomers were detected with abundances of (2 ± 0.6) × 10−7, (4.3−8) × 10−8, and (5.0 ± 1.4) × 10−9 for methyl formate, acetic acid, and glycolaldehyde, respectively. Methyl formate and acetic acid abundances are the highest detected up to now, if compared to sources in the literature. The size of the emission varies among the three isomers with acetic acid showing the most compact emission while methyl formate exhibits the most extended emission. Different chemical pathways, involving both grain-surface chemistry and cold or hot gas-phase reactions, have been proposed for the formation of these molecules, but the small number of detections, especially of acetic acid and glycolaldehyde, have made it very difficult to confirm or discard the predictions of the models. The comparison with chemical models in literature suggests the necessity of grain-surface routes for the formation of methyl formate in G31, while for glycolaldehyde both scenarios could be feasible. The proposed grain-surface reaction for acetic acid is not capable of reproducing the observed abundance in this work, while the gas-phase scenario should be further tested, given the large uncertainties involved.


2014 ◽  
Vol 168 ◽  
pp. 389-421 ◽  
Author(s):  
Catherine Walsh ◽  
Eric Herbst ◽  
Hideko Nomura ◽  
T. J. Millar ◽  
Susanna Widicus Weaver

The birth environment of the Sun will have influenced the physical and chemical structure of the pre-solar nebula, including the attainable chemical complexity reached in the disk, important for prebiotic chemistry. The formation and distribution of complex organic molecules (COMs) in a disk around a T Tauri star is investigated for two scenarios: (i) an isolated disk, and (ii) a disk irradiated externally by a nearby massive star. The chemistry is calculated along the accretion flow from the outer disk inwards using a comprehensive network which includes gas-phase reactions, gas-grain interactions, and thermal grain-surface chemistry. Two simulations are performed, one beginning with complex ices and one with simple ices only. For the isolated disk, COMs are transported without major chemical alteration into the inner disk where they thermally desorb into the gas reaching an abundance representative of the initial assumed ice abundance. For simple ices, COMs can efficiently form on grain surfaces under the conditions in the outer disk. Gas-phase COMs are released into the molecular layer via photodesorption. For the irradiated disk, complex ices are also transported inwards; however, they undergo thermal processing caused by the warmer conditions in the irradiated disk which tends to reduce their abundance along the accretion flow. For simple ices, grain-surface chemistry cannot efficiently synthesise COMs in the outer disk because the necessary grain-surface radicals, which tend to be particularly volatile, are not sufficiently abundant on the grain surfaces. Gas-phase COMs are formed in the inner region of the irradiated disk via gas-phase chemistry induced by the desorption of strongly bound molecules such as methanol; hence, the abundances are not representative of the initial molecular abundances injected into the outer disk. These results suggest that the composition of comets formed in isolated disks may differ from those formed in externally irradiated disks with the latter composed of more simple ices.


2020 ◽  
Vol 639 ◽  
pp. A87 ◽  
Author(s):  
M. L. van Gelder ◽  
B. Tabone ◽  
Ł. Tychoniec ◽  
E. F. van Dishoeck ◽  
H. Beuther ◽  
...  

Context. Complex organic molecules (COMs) are thought to form on icy dust grains in the earliest phase of star formation. The evolution of these COMs from the youngest Class 0/I protostellar phases toward the more evolved Class II phase is still not fully understood. Since planet formation seems to start early, and mature disks are too cold for characteristic COM emission lines, studying the inventory of COMs on Solar- System scales in the Class 0/I stage is relevant. Aims. Our aim is to determine the abundance ratios of oxygen-bearing COMs in Class 0 protostellar systems on scales of ~100 AU radius. We aim to compare these abundances with one another, and to the abundances of other low-mass protostars such as IRAS 16293-2422B and HH 212. Additionally, using both cold and hot COM lines, the gas-phase abundances can be tracked from a cold to a hot component, and ultimately be compared with those in ices to be measured with the James Webb Space Telescope (JWST). The abundance of deuterated methanol allows us to probe the ambient temperature during the formation of this species. Methods. ALMA Band 3 (3 mm) and Band 6 (1 mm) observations are obtained for seven Class 0 protostars in the Perseus and Serpens star-forming regions. By modeling the inner protostellar region using local thermodynamic equilibrium models, the excitation temperature and column densities are determined for several O-bearing COMs including methanol (CH3OH), acetaldehyde (CH3CHO), methyl formate (CH3OCHO), and dimethyl ether (CH3OCH3). Abundance ratios are taken with respect to CH3OH. Results. Three out of the seven of the observed sources, B1-c, B1-bS (both Perseus), and Serpens S68N (Serpens), show COM emission. No clear correlation seems to exist between the occurrence of COMs and source luminosity. The abundances of several COMs such as CH3OCHO, CH3OCH3, acetone (CH3COCH3), and ethylene glycol ((CH2OH)2) are remarkably similar for the three COM-rich sources; this similarity also extends to IRAS 16293-2422B and HH 212, even though collectively these sources originate from four different star-forming regions (i.e., Perseus, Serpens, Ophiuchus, and Orion). For other COMs like CH3CHO, ethanol (CH3CH2OH), and glycolaldehyde (CH2OHCHO), the abundances differ by up to an order of magnitude, indicating that local source conditions become important. B1-c hosts a cold (Tex ≈ 60 K), more extended component of COM emission with a column density of typically a few percent of the warm/hot (Tex ~ 200 K) central component. A D/H ratio of 1–3% is derived for B1-c, S68N, and B1-bS based on the CH2DOH/CH3OH ratio (taking into account statistical weighting) suggesting a temperature of ~15 K during the formation of methanol. This ratio is consistent with other low-mass protostars, but is lower than for high-mass star-forming regions. Conclusions. The abundance ratios of most O-bearing COMs are roughly fixed between different star-forming regions, and are presumably set at an earlier cold prestellar phase. For several COMs, local source properties become important. Future mid-infrared facilities such as JWST/MIRI will be essential for the direct observation of COM ices. Combining this with a larger sample of COM-rich sources with ALMA will allow ice and gas-phase abundances to be directly linked in order to constrain the routes that produce and maintain chemical complexity during the star formation process.


2017 ◽  
Vol 474 (2) ◽  
pp. 2796-2812 ◽  
Author(s):  
David Quénard ◽  
Izaskun Jiménez-Serra ◽  
Serena Viti ◽  
Jonathan Holdship ◽  
Audrey Coutens

2020 ◽  
Vol 496 (4) ◽  
pp. 5292-5307
Author(s):  
Y Layssac ◽  
A Gutiérrez-Quintanilla ◽  
T Chiavassa ◽  
F Duvernay

ABSTRACT Complex organic molecules (COMs) have been identified toward high- and low-mass protostars as well as molecular clouds. Among them, sugar-like and polyol two carbon-bearing molecules such as glycolaldehyde (GA) and ethylene glycol (EG) are of special interest. Recent laboratory experiments have shown that they can efficiently be formed via atom addition reactions between accreting H-atoms and CO molecules or via energetic processes (UV, electrons) on ice analogues containing methanol or formaldehyde. In this study, we report new laboratory experiments on the low-temperature solid state formation of complex organic molecules – the first sugar glyceraldehyde and its saturated derivative glycerol – through VUV photolysis performed at three different temperatures (15, 50, and 90 K) of astrochemically relevant ices composed of water and formaldehyde. We get evidence that the species production depends on the ice temperature during photolysis. The results presented here indicate that a general scheme of aldose and polyol formation is plausible and that heavier COMs than GA and EG could exist in interstellar environments. We propose a general pathway involving radical-formaldehyde reactions as common initiation step for aldose and polyol formation. Future telescope observations may give additional clues on their presence in star-forming regions as observations are currently limited because of the detection thresholds.


2016 ◽  
Vol 113 (28) ◽  
pp. 7727-7732 ◽  
Author(s):  
Matthew J. Abplanalp ◽  
Samer Gozem ◽  
Anna I. Krylov ◽  
Christopher N. Shingledecker ◽  
Eric Herbst ◽  
...  

Complex organic molecules such as sugars and amides are ubiquitous in star- and planet-forming regions, but their formation mechanisms have remained largely elusive until now. Here we show in a combined experimental, computational, and astrochemical modeling study that interstellar aldehydes and enols like acetaldehyde (CH3CHO) and vinyl alcohol (C2H3OH) act as key tracers of a cosmic-ray-driven nonequilibrium chemistry leading to complex organics even deep within low-temperature interstellar ices at 10 K. Our findings challenge conventional wisdom and define a hitherto poorly characterized reaction class forming complex organic molecules inside interstellar ices before their sublimation in star-forming regions such as SgrB2(N). These processes are of vital importance in initiating a chain of chemical reactions leading eventually to the molecular precursors of biorelevant molecules as planets form in their interstellar nurseries.


2019 ◽  
Vol 3 (10) ◽  
pp. 2088-2109 ◽  
Author(s):  
Marta Sewiło ◽  
Steven B. Charnley ◽  
Peter Schilke ◽  
Vianney Taquet ◽  
Joana M. Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document