scholarly journals The ALMA-PILS survey: propyne (CH3CCH) in IRAS 16293–2422

2019 ◽  
Vol 631 ◽  
pp. A137 ◽  
Author(s):  
H. Calcutt ◽  
E. R. Willis ◽  
J. K. Jørgensen ◽  
P. Bjerkeli ◽  
N. F. W. Ligterink ◽  
...  

Context. Propyne (CH3CCH), also known as methyl acetylene, has been detected in a variety of environments, from Galactic star-forming regions to extragalactic sources. These molecules are excellent tracers of the physical conditions in star-forming regions, allowing the temperature and density conditions surrounding a forming star to be determined. Aims. This study explores the emission of CH3CCH in the low-mass protostellar binary, IRAS 16293–2422, and examines the spatial scales traced by this molecule, as well as its formation and destruction pathways. Methods. Atacama Large Millimeter/submillimeter Array (ALMA) observations from the Protostellar Interferometric Line Survey (PILS) were used to determine the abundances and excitation temperatures of CH3CCH towards both protostars. This data allows us to explore spatial scales from 70 to 2400 au. This data is also compared with the three-phase chemical kinetics model MAGICKAL, to explore the chemical reactions of this molecule. Results. CH3CCH is detected towards both IRAS 16293A and IRAS 16293B, and is found the hot corino components, one around each source, in the PILS dataset. Eighteen transitions above 3σ are detected, enabling robust excitation temperatures and column densities to be determined in each source. In IRAS 16293A, an excitation temperature of 90 K and a column density of 7.8 × 1015 cm−2 best fits the spectra. In IRAS 16293B, an excitation temperature of 100 K and 6.8 × 1015 cm−2 best fits the spectra. The chemical modelling finds that in order to reproduce the observed abundances, both gas-phase and grain-surface reactions are needed. The gas-phase reactions are particularly sensitive to the temperature at which CH4 desorbs from the grains. Conclusions. CH3CCH is a molecule whose brightness and abundance in many different regions can be utilised to provide a benchmark of molecular variation with the physical properties of star-forming regions. It is essential when making such comparisons, that the abundances are determined with a good understanding of the spatial scale of the emitting region, to ensure that accurate abundances are derived.

2019 ◽  
Vol 628 ◽  
pp. A72 ◽  
Author(s):  
R. G. Urso ◽  
M. E. Palumbo ◽  
C. Ceccarelli ◽  
N. Balucani ◽  
S. Bottinelli ◽  
...  

Context. C2O and C3O belong to the carbon chain oxides family. Both molecules have been detected in the gas phase towards several star-forming regions, and to explain the observed abundances, ion-molecule gas-phase reactions have been invoked. On the other hand, laboratory experiments have shown that carbon chain oxides are formed after energetic processing of CO-rich solid mixtures. Therefore, it has been proposed that they are formed in the solid phase in dense molecular clouds after cosmic ion irradiation of CO-rich icy grain mantles and released in the gas phase after their desorption. Aims. In this work, we contribute to the understanding of the role of both gas-phase reactions and energetic processing in the formation of simple carbon chain oxides that have been searched for in various low-mass star-forming regions. Methods. We present observations obtained with the Noto-32m and IRAM-30 m telescopes towards star-forming regions. We compare these with the results of a gas-phase model that simulates C2O and C3O formation and destruction, and laboratory experiments in which both molecules are produced after energetic processing (with 200 keV protons) of icy grain mantle analogues. Results. New detections of both molecules towards L1544, L1498, and Elias 18 are reported. The adopted gas phase model is not able to reproduce the observed C2O/C3O ratios, while laboratory experiments show that the ion bombardment of CO-rich mixtures produces C2O/C3O ratios that agree with the observed values. Conclusions. Based on the results obtained here, we conclude that the synthesis of both species is due to the energetic processing of CO-rich icy grain mantles. Their subsequent desorption because of non-thermal processes allows the detection in the gas-phase of young star-forming regions. In more evolved objects, the non-detection of both C2O and C3O is due to their fast destruction in the warm gas.


2017 ◽  
Vol 13 (S332) ◽  
pp. 415-417
Author(s):  
David Quénard ◽  
Izaskun Jiménez-Serra ◽  
Serena Viti ◽  
Jonathan Holdship

AbstractThe study of complex organic molecules, and more specifically those of prebiotic interest, is important to understand the chemical richness of star-forming regions. The chemistry of nitrogen bearing molecules such as formamide or methyl isocyanate is poorly constrained. We study different chemical pathways to form and destroy these molecules from both the gas phase and grain surface chemistry. From comparison with observations of four different relevant astrophysical regions, we show that both the gas phase and grain surface chemistry are required to explain the observed abundances of these species.


2019 ◽  
Vol 629 ◽  
pp. A77
Author(s):  
A. I. Gómez-Ruiz ◽  
A. Gusdorf ◽  
S. Leurini ◽  
K. M. Menten ◽  
S. Takahashi ◽  
...  

Context. OMC-2/3 is one of the nearest embedded cluster-forming regions that includes intermediate-mass protostars at early stages of evolution. A previous CO (3–2) mapping survey towards this region revealed outflow activity related to sources at different evolutionary phases. Aims. The present work presents a study of the warm gas in the high-velocity emission from several outflows found in CO (3–2) emission by previous observations, determines their physical conditions, and makes a comparison with previous results in low-mass star-forming regions. Methods. We used the CHAMP+ heterodyne array on the APEX telescope to map the CO (6–5) and CO (7–6) emission in the OMC-2 FIR 6 and OMC-3 MMS 1-6 regions, and to observe 13CO (6–5) at selected positions. We analyzed these data together with previous CO (3–2) observations. In addition, we mapped the SiO (5–4) emission in OMC-2 FIR 6. Results. The CO (6–5) emission was detected in most of the outflow lobes in the mapped regions, while the CO (7–6) was found mostly in the OMC-3 outflows. In the OMC-3 MMS 5 outflow, a previously undetected extremely high-velocity gas was found in CO (6–5). This extremely high-velocity emission arises from the regions close to the central object MMS 5. Radiative transfer models revealed that the high-velocity gas from MMS 5 outflow consists of gas with nH2 = 104–105 cm−3 and T > 200 K, similar to what is observed in young Class 0 low-mass protostars. For the other outflows, values of nH2 > 104 cm−3 were found. Conclusions. The physical conditions and kinematic properties of the young intermediate-mass outflows presented here are similar to those found in outflows from Class 0 low-mass objects. Due to their excitation requirements, mid − J CO lines are good tracers of extremely high-velocity gas in young outflows likely related to jets.


Author(s):  
K. Altwegg ◽  
H. Balsiger ◽  
J. J. Berthelier ◽  
A. Bieler ◽  
U. Calmonte ◽  
...  

The European Rosetta mission has been following comet 67P/Churyumov–Gerasimenko for 2 years, studying the nucleus and coma in great detail. For most of these 2 years the Rosetta Orbiter Sensor for Ion and Neutral Analysis (ROSINA) has analysed the volatile part of the coma. With its high mass resolution and sensitivity it was able to not only detect deuterated water HDO, but also doubly deuterated water, D 2 O and deuterated hydrogen sulfide HDS. The ratios for [HDO]/[H 2 O], [D 2 O]/[HDO] and [HDS]/[H 2 S] derived from our measurements are (1.05 ± 0.14) × 10 −3 , (1.80 ± 0.9) × 10 −2 and (1.2 ± 0.3) × 10 −3 , respectively. These results yield a very high ratio of 17 for [D 2 O]/[HDO] relative to [HDO]/[H 2 O]. Statistically one would expect just 1/4. Such a high value can be explained by cometary water coming unprocessed from the presolar cloud, where water is formed on grains, leading to high deuterium fractionation. The high [HDS]/[H 2 S] ratio is compatible with upper limits determined in low-mass star-forming regions and also points to a direct correlation of cometary H 2 S with presolar grain surface chemistry. This article is part of the themed issue ‘Cometary science after Rosetta’.


2018 ◽  
Vol 615 ◽  
pp. A88 ◽  
Author(s):  
Eva G. Bøgelund ◽  
Brett A. McGuire ◽  
Niels F. W. Ligterink ◽  
Vianney Taquet ◽  
Crystal L. Brogan ◽  
...  

Context. The abundance of deuterated molecules in a star-forming region is sensitive to the environment in which they are formed. Deuteration fractions, in other words the ratio of a species containing D to its hydrogenated counterpart, therefore provide a powerful tool for studying the physical and chemical evolution of a star-forming system. While local low-mass star-forming regions show very high deuteration ratios, much lower fractions are observed towards Orion and the Galactic centre. Astration of deuterium has been suggested as a possible cause for low deuteration in the Galactic centre. Aims. We derive methanol deuteration fractions at a number of locations towards the high-mass star-forming region NGC 6334I, located at a mean distance of 1.3 kpc, and discuss how these can shed light on the conditions prevailing during its formation. Methods. We use high sensitivity, high spatial and spectral resolution observations obtained with the Atacama Large Millimeter/ submillimeter Array to study transitions of the less abundant, optically thin, methanol-isotopologues: 13CH3OH, CH318OH, CH2DOH and CH3OD, detected towards NGC 6334I. Assuming local thermodynamic equilibrium (LTE) and excitation temperatures of ~120–330 K, we derive column densities for each of the species and use these to infer CH2DOH/CH3OH and CH3OD/CH3OH fractions. Results. We derive column densities in a range of (0.8–8.3) × 1017 cm−2 for 13CH3OH, (0.13–3.4) × 1017 cm−2 for CH318OH, (0.03–1.63) × 1017 cm−2 for CH2DOH and (0.15–5.5) × 1017 cm−2 for CH3OD in a ~1″ beam. Interestingly, the column densities of CH3OD are consistently higher than those of CH2DOH throughout the region by factors of 2–15. We calculate the CH2DOH to CH3OH and CH3OD to CH3OH ratios for each of the sampled locations in NGC 6334I. These values range from 0.03% to 0.34% for CH2DOH and from 0.27% to 1.07% for CH3OD if we use the 13C isotope of methanol as a standard; using the 18 O-methanol as a standard, decreases the ratios by factors of between two and three. Conclusions. All regions studied in this work show CH2DOH/CH3OH as well as CH2DOH/CH3OD values that are considerably lower than those derived towards low-mass star-forming regions and slightly lower than those derived for the high-mass star-forming regions in Orion and the Galactic centre. The low ratios indicate a grain surface temperature during formation ~30 K, for which the efficiency of the formation of deuterated species is significantly reduced. Therefore, astration of deuterium in the Galactic centre cannot be the explanation for its low deuteration ratio but rather the high temperatures characterising the region.


2009 ◽  
Vol 5 (H15) ◽  
pp. 406-407
Author(s):  
Doug Johnstone

AbstractCoordinated multi-wavelength surveys of molecular clouds are providing strong constraints on the physical conditions within low-mass star-forming regions. In this manner, Perseus and Ophiuchus have been exceptional laboratories for testing the earliest phases of star formation. Highlights of these results are: (1) dense cores form only in high column density regions, (2) dense cores contain only a few percent of the cloud mass, (3) the mass distribution of the dense cores is similar to the IMF, (4) the more massive cores are most likely to contain embedded protostars, and (5) the kinematics of the dense cores and the bulk gas show significant coupling.


2019 ◽  
Vol 490 (4) ◽  
pp. 4489-4501 ◽  
Author(s):  
G Sabatini ◽  
A Giannetti ◽  
S Bovino ◽  
J Brand ◽  
S Leurini ◽  
...  

ABSTRACT An estimate of the degree of CO-depletion (fD) provides information on the physical conditions occurring in the innermost and densest regions of molecular clouds. A key parameter in these studies is the size of the depletion radius, i.e. the radius within which the C-bearing species, and in particular CO, are largely frozen on to dust grains. A strong depletion state (i.e. fD > 10, as assumed in our models) is highly favoured in the innermost regions of dark clouds, where the temperature is <20 K and the number density of molecular hydrogen exceeds a few × 104 cm−3. In this work, we estimate the size of the depleted region by studying the Infrared Dark Cloud (IRDC) G351.77−0.51. Continuum observations performed with the Herschel Space Observatory and the LArge APEX BOlometer CAmera, together with APEX C18O and C17O J = 2→1 line observations, allowed us to recover the large-scale beam- and line-of-sight-averaged depletion map of the cloud. We built a simple model to investigate the depletion in the inner regions of the clumps in the filament and the filament itself. The model suggests that the depletion radius ranges from 0.02 to 0.15 pc, comparable with the typical filament width (i.e. ∼0.1 pc). At these radii, the number density of H2 reaches values between 0.2 and 5.5 × 105 cm−3. These results provide information on the approximate spatial scales on which different chemical processes operate in high-mass star-forming regions and also suggest caution when using CO for kinematical studies in IRDCs.


2008 ◽  
Vol 4 (S251) ◽  
pp. 99-104
Author(s):  
H. Roberts

AbstractMeasuring the deuterium fractionation in different molecules can allow one to determine the physical conditions in the gas and to differentiate between gas-phase and grain surface chemical processing. Observations of molecular D/H ratios in different species towards the dense gas surrounding low-mass protostars are presented and are compared with model simulations. These consider gas-phase chemistry, accretion and desorption, and reactions on grain surfaces during the initial stages of core collapse.


2020 ◽  
Vol 639 ◽  
pp. A87 ◽  
Author(s):  
M. L. van Gelder ◽  
B. Tabone ◽  
Ł. Tychoniec ◽  
E. F. van Dishoeck ◽  
H. Beuther ◽  
...  

Context. Complex organic molecules (COMs) are thought to form on icy dust grains in the earliest phase of star formation. The evolution of these COMs from the youngest Class 0/I protostellar phases toward the more evolved Class II phase is still not fully understood. Since planet formation seems to start early, and mature disks are too cold for characteristic COM emission lines, studying the inventory of COMs on Solar- System scales in the Class 0/I stage is relevant. Aims. Our aim is to determine the abundance ratios of oxygen-bearing COMs in Class 0 protostellar systems on scales of ~100 AU radius. We aim to compare these abundances with one another, and to the abundances of other low-mass protostars such as IRAS 16293-2422B and HH 212. Additionally, using both cold and hot COM lines, the gas-phase abundances can be tracked from a cold to a hot component, and ultimately be compared with those in ices to be measured with the James Webb Space Telescope (JWST). The abundance of deuterated methanol allows us to probe the ambient temperature during the formation of this species. Methods. ALMA Band 3 (3 mm) and Band 6 (1 mm) observations are obtained for seven Class 0 protostars in the Perseus and Serpens star-forming regions. By modeling the inner protostellar region using local thermodynamic equilibrium models, the excitation temperature and column densities are determined for several O-bearing COMs including methanol (CH3OH), acetaldehyde (CH3CHO), methyl formate (CH3OCHO), and dimethyl ether (CH3OCH3). Abundance ratios are taken with respect to CH3OH. Results. Three out of the seven of the observed sources, B1-c, B1-bS (both Perseus), and Serpens S68N (Serpens), show COM emission. No clear correlation seems to exist between the occurrence of COMs and source luminosity. The abundances of several COMs such as CH3OCHO, CH3OCH3, acetone (CH3COCH3), and ethylene glycol ((CH2OH)2) are remarkably similar for the three COM-rich sources; this similarity also extends to IRAS 16293-2422B and HH 212, even though collectively these sources originate from four different star-forming regions (i.e., Perseus, Serpens, Ophiuchus, and Orion). For other COMs like CH3CHO, ethanol (CH3CH2OH), and glycolaldehyde (CH2OHCHO), the abundances differ by up to an order of magnitude, indicating that local source conditions become important. B1-c hosts a cold (Tex ≈ 60 K), more extended component of COM emission with a column density of typically a few percent of the warm/hot (Tex ~ 200 K) central component. A D/H ratio of 1–3% is derived for B1-c, S68N, and B1-bS based on the CH2DOH/CH3OH ratio (taking into account statistical weighting) suggesting a temperature of ~15 K during the formation of methanol. This ratio is consistent with other low-mass protostars, but is lower than for high-mass star-forming regions. Conclusions. The abundance ratios of most O-bearing COMs are roughly fixed between different star-forming regions, and are presumably set at an earlier cold prestellar phase. For several COMs, local source properties become important. Future mid-infrared facilities such as JWST/MIRI will be essential for the direct observation of COM ices. Combining this with a larger sample of COM-rich sources with ALMA will allow ice and gas-phase abundances to be directly linked in order to constrain the routes that produce and maintain chemical complexity during the star formation process.


Sign in / Sign up

Export Citation Format

Share Document